Passive On-Chip Superconducting Circulator Using a Ring of Tunnel Junctions.

We present the design of a passive, on-chip microwave circulator based on a ring of superconducting tunnel junctions. We investigate two distinct physical realizations, based on Josephson junctions (JJs) or quantum phase slip elements (QPS), with microwave ports coupled either capacitively (JJ) or inductively (QPS) to the ring structure. A constant bias applied to the center of the ring provides an effective symmetry breaking field, and no microwave or rf bias is required. We show that this design offers high isolation, robustness against fabrication imperfections and bias fluctuations, and a bandwidth in excess of 500 MHz for realistic device parameters.

[1]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[2]  B. Voronov,et al.  Coherent dynamics and decoherence in a superconducting weak link , 2016, 1601.07899.

[3]  Michael Marthaler,et al.  Analog quantum simulation of the Rabi model in the ultra-strong coupling regime , 2016, Nature Communications.

[4]  S. Filipp,et al.  Dressed collective qubit states and the Tavis-Cummings model in circuit QED. , 2008, Physical review letters.

[5]  A. Metelmann,et al.  Minimal Models for Nonreciprocal Amplification Using Biharmonic Drives , 2016, 1607.06822.

[6]  Ben Q. Baragiola,et al.  Quantum trajectories for propagating Fock states , 2017, 1704.00101.

[7]  A. Rauschenbeutel,et al.  Chiral quantum optics , 2017, ICTON.

[8]  A. Metelmann,et al.  Nonreciprocal Photon Transmission and Amplification via Reservoir Engineering , 2015, 1502.07274.

[9]  Kang L. Wang,et al.  Zero-field edge plasmons in a magnetic topological insulator , 2017, Nature Communications.

[10]  Andrea Alù,et al.  Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops , 2014, Nature Physics.

[11]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[12]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2013 .

[13]  Shiro Saito,et al.  Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime , 2016, Nature Physics.

[14]  A. C. Doherty,et al.  On-Chip Microwave Quantum Hall Circulator , 2016, 1601.00634.

[15]  Thomas M Stace,et al.  Quantum nondemolition detection of a propagating microwave photon. , 2013, Physical review letters.

[16]  Jie Luo,et al.  Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering , 2016, Nature Physics.

[17]  H. Neven,et al.  Digitized adiabatic quantum computing with a superconducting circuit. , 2015, Nature.

[18]  C. L. Hogan,et al.  The ferromagnetic Faraday effect at microwave frequencies and its applications: The microwave gyrator , 1952 .

[19]  C. L. Hogan,et al.  The Ferromagnetic Faraday Effect at Microwave Frequencies and its Applications , 1953 .

[20]  P. Joyez,et al.  Manipulating the Quantum State of an Electrical Circuit , 2002, Science.

[21]  N. Langford,et al.  Experimentally simulating the dynamics of quantum light and matter at ultrastrong coupling using circuit QED (1) - implementation and matter dynamics - , 2017 .

[22]  R. J. Schoelkopf,et al.  Reconfigurable Josephson Circulator/Directional Amplifier , 2015, 1503.00209.

[23]  L. Ioffe,et al.  Coherent flux tunneling through NbN nanowires , 2013, 1305.6692.

[24]  A. Blais,et al.  Detection and manipulation of Majorana fermions in circuit QED , 2013, 1306.1539.

[25]  Alexandre Blais,et al.  On-chip superconducting microwave circulator from synthetic rotation , 2015, 1502.06041.

[26]  L. Ranzani,et al.  Nonreciprocal Microwave Signal Processing with a Field-Programmable Josephson Amplifier. , 2016, Physical review applied.

[27]  Joseph Kerckhoff,et al.  The SLH framework for modeling quantum input-output networks , 2016, 1611.00375.

[28]  J. Mooij,et al.  Superconducting nanowires as quantum phase-slip junctions , 2006 .

[29]  Uri Vool,et al.  Introduction to quantum electromagnetic circuits , 2016, Int. J. Circuit Theory Appl..

[30]  Jens Koch,et al.  Time-reversal-symmetry breaking in circuit-QED-based photon lattices , 2010, 1006.0762.

[31]  D V Averin,et al.  Aharonov-Casher-effect suppression of macroscopic tunneling of magnetic flux. , 2002, Physical review letters.

[32]  Thomas M. Stace,et al.  Nonabsorbing high-efficiency counter for itinerant microwave photons , 2014, 1403.4465.

[33]  K. Lehnert,et al.  Breaking Lorentz Reciprocity with Frequency Conversion and Delay. , 2017, Physical review letters.

[34]  A. Brańczyk,et al.  N-photon wave packets interacting with an arbitrary quantum system , 2012, 1202.3430.

[35]  Kang L. Wang,et al.  Zero-field edge plasmons in a magnetic topological insulator , 2017, Nature Communications.

[36]  John Clarke,et al.  Noiseless non-reciprocity in a parametric active device , 2010, 1010.1794.

[37]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[38]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[39]  Alexandre Blais,et al.  Widely Tunable On-Chip Microwave Circulator for Superconducting Quantum Circuits , 2017, 1707.04565.

[40]  G J Milburn,et al.  Mesoscopic one-way channels for quantum state transfer via the quantum Hall effect. , 2004, Physical review letters.

[41]  David P. DiVincenzo,et al.  Hall Effect Gyrators and Circulators , 2013, 1312.5190.

[42]  N. Langford,et al.  Experimentally simulating the dynamics of quantum light and matter at deep-strong coupling , 2016, Nature Communications.

[43]  J. Combes,et al.  Nonreciprocal atomic scattering: A saturable, quantum Yagi-Uda antenna , 2017, 1708.03450.

[44]  L. Ioffe,et al.  Coherent quantum phase slip , 2012, Nature.

[45]  M. A. Yurtalan,et al.  Ultrastrong coupling of a single artificial atom to an electromagnetic continuum in the nonperturbative regime , 2016, Nature Physics.