Mapping vegetation in a heterogeneous mountain rangeland using landsat data: an alternative method to define and classify land-cover units

Abstract Three major problems are faced when mapping natural vegetation with mid-resolution satellite images using conventional supervised classification techniques: defining the adequate hierarchical level for mapping; defining discrete land cover units discernible by the satellite; and selecting representative training sites. In order to solve these problems, we developed an approach based on the: (1) definition of ecologically meaningful units as mosaics or repetitive combinations of structural types, (2) utilization of spectral information (indirectly) to define the units, (3) exploration of two alternative methods to classify the units once they are defined: the traditional, Maximum Likelihood method, which was enhanced by analyzing objective ways of selecting the best training sites, and an alternative method using Discriminant Functions directly obtained from the statistical analysis of signatures. The study was carried out in a heterogeneous mountain rangeland in central Argentina using Landsat data and 251 field sampling sites. On the basis of our analysis combining terrain information (a matrix of 251 stands×14 land cover attributes) and satellite data (a matrix of 251 stands×8 bands), we defined 8 land cover units (mosaics of structural types) for mapping, emphasizing the structural types which had stronger effects on reflectance. The comparison through field validation of both methods for mapping units showed that classification based on Discriminant Functions produced better results than the traditional Maximum Likelihood method (accuracy of 86% vs. 78%).

[1]  Eric D. Kolaczyk,et al.  Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing , 2003 .

[2]  Marcelo Cabido,et al.  Regeneration of Polylepis australis Bitt. in the mountains of central Argentina , 2004 .

[3]  G. Guyot,et al.  2 – OPTICAL PROPERTIES OF VEGETATION CANOPIES , 1990 .

[4]  M. Cabido Las comunidades vegetales de la Pampa de Achala. Sierras de Cordoba, Argentina , 1985 .

[5]  A. Perevolotsky,et al.  Role of Grazing in Mediterranean Rangeland Ecosystems Inversion of a paradigm , 1998 .

[6]  Marcelo Cabido,et al.  PLANT COMMUNITIES AND ASSOCIATED SOIL TYPES IN A HIGH PLATEAU OF THE CORDOBA MOUNTAINS, CENTRAL ARGENTINA , 1987 .

[7]  Tara G. Martin,et al.  The relative importance of cattle grazing in subtropical grasslands: does it reduce or enhance plant biodiversity? , 2003 .

[8]  A. Lobo,et al.  Fine-scale mapping of a grassland from digitized aerial photography: an approach using image segmentation and discriminant analysis , 1998 .

[9]  E. Johnson,et al.  Geomorphic principles of terrain organization and vegetation gradients , 2000 .

[10]  Philip A. Townsend,et al.  A Quantitative Fuzzy Approach to Assess Mapped Vegetation Classifications for Ecological Applications , 2000 .

[11]  Russell G. Congalton,et al.  Assessing the accuracy of remotely sensed data : principles and practices , 1998 .

[12]  A. Cingolani,et al.  Identifying habitat types in a disturbed area of the forest-steppe ecotone of Patagonia , 2004, Plant Ecology.

[13]  J. Finn,et al.  Remote sensing imagery for natural resources monitoring : a guide for first-time users , 1996 .

[14]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[15]  Sandra Díaz,et al.  Community structure in montane grasslands of central Argentina in relation to land use , 1994 .

[16]  Giuseppe Arbia,et al.  Contextual classification in image analysis: an assessment of accuracy of ICM , 1999 .

[17]  V. Clark,et al.  Computer-aided multivariate analysis , 1991 .

[18]  Marija J. Norusis,et al.  SPSS for Windows Base System User''s Guide , 1992 .

[19]  Ana M. Cingolani,et al.  The steppes of Tierra del Fuego: floristic and growthform patterns controlled by soil fertility and moisture , 2004, Plant Ecology.

[20]  Sandra Díaz,et al.  Floristic composition, biomass, and aboveground net plant production in grazed and protected sites in a mountain grassland of central Argentina , 1998 .

[21]  D. Milchunas,et al.  Quantitative Effects of Grazing on Vegetation and Soils Over a Global Range of Environments , 1993 .

[22]  M. Cabido,et al.  Estudio fitosociologicao en bosques de Polylepis australis Bitt. (Tabaquillo) en las Sierras de Cordoba, Argentina , 1985 .

[23]  L. Walker,et al.  Ecosystems of Disturbed Ground , 1999 .

[24]  Paul T. Tueller,et al.  Landsat Computer-aided Analysis Techniques for Range Vegetation Mapping , 1983 .

[25]  J. Wilson,et al.  A method for determining indigenous vegetation from simple environmental factors, and its use for vegetation restoration , 1991 .

[26]  Ana M. Cingolani,et al.  Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. , 2004 .

[27]  C.J.F. ter Braak,et al.  CANOCO - a FORTRAN program for canonical community ordination by [partial] [etrended] [canonical] correspondence analysis, principal components analysis and redundancy analysis (version 2.1) , 1988 .

[28]  Andrew O. Finley,et al.  Delineation of forest/nonforest land use classes using nearest neighbor methods , 2004 .

[29]  Ana M. Cingolani,et al.  Landscape heterogeneity and long-term animal production in Tierra del Fuego , 1998 .

[30]  F. Tanser,et al.  Vegetation mapping of the Great Fish River basin, South Africa: Integrating spatial and multi‐spectral remote sensing techniques , 2000 .

[31]  N. West Biodiversity of rangelands. , 1993 .

[32]  Daniel Renison,et al.  Efectos del fuego sobre un bosquecillo de Polylepis australis (Rosaceae) en las montañas de Córdoba, Argentina , 2002 .

[33]  Tuuli Toivonen,et al.  Prediction of total and rare plant species richness in agricultural landscapes from satellite images and topographic data , 2002, Landscape Ecology.

[34]  John R. Jensen Introductory Digital Image Processing , 2004 .

[35]  J. Stol,et al.  Abundance and composition of plant species along grazing gradients in Australian rangelands , 2003 .

[36]  Robin Fuller,et al.  The Use of Classified Landsat-5 Thematic Mapper Imagery in the Characterization of Landscape Composition: a Case Study in Northern England , 1994 .

[37]  M. Lewis,et al.  Numeric classification as an aid to spectral mapping of vegetation communities , 1998, Plant Ecology.

[38]  Alexander Siegmund,et al.  Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data , 2003 .

[39]  David J. Balding,et al.  Fine-scale Mapping , 2004 .

[40]  R. Jackson,et al.  Spectral response of a plant canopy with different soil backgrounds , 1985 .

[41]  Marcelo R. Zak,et al.  Spatial patterns of the Chaco vegetation of central Argentina: Integration of remote sensing and phytosociology , 2002 .

[42]  M. Hill,et al.  Data analysis in community and landscape ecology , 1987 .

[43]  Donald F. Post,et al.  Relations between soil color and landsat reflectance on semiarid rangelands , 1994 .

[44]  G. Daily,et al.  Conserving Biodiversity and Ecosystem Services , 2001, Science.

[45]  Ana M. Cingolani,et al.  Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands , 2003 .

[46]  M. Tobler,et al.  The impact of cattle ranching on large-scale vegetation patterns in a coastal savanna in Tanzania , 2003 .

[47]  Frank W. Davis,et al.  Distribution and conservation status of coastal sage scrub in southwestern California , 1994 .

[48]  Patrick E. Clark,et al.  Intermountain plant community classification using Landsat TM and SPOT HRV data. , 2001 .

[49]  C. Woodcock,et al.  Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects? , 2001 .

[50]  W. Cohen,et al.  Land cover mapping in an agricultural setting using multiseasonal Thematic Mapper data , 2001 .

[51]  Jonathan T. C. Budd Remote sensing techniques for monitoring land-cover , 1991 .