Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments

Abstract This work considers fourteen weathering steels manufactured by adding Cu, Cr and Ni alloying elements to extra mild steel. The steels were exposed for up to 5 years in different atmospheres. The atmospheric corrosion resistance of the steels was evaluated and the rust layers formed were characterised by X-ray diffraction, optical microscopy and scanning electron microscopy. The addition of Ni, particularly at 3.0 wt%, leads to a notable increase in corrosion resistance. The rusts formed contain lepidocrocite, goethite and spinel phases. X-ray diffraction also detected small amounts of kornelite (industrial atmosphere) and akaganeite (marine atmosphere).

[1]  Iván Díaz,et al.  Marine Atmospheric Corrosion of Carbon Steel: A Review , 2017, Materials.

[2]  Koji Hashimoto,et al.  The Mechanism of Atmospheric Rusting and the Protective Amorphous Rust on Low Alloy Steel(Chemistry) , 1974 .

[3]  Iván Díaz,et al.  Atmospheric corrosion data of weathering steels. A review , 2013 .

[4]  J. Jiménez,et al.  Characterisation of rust surfaces formed on mild steel exposed to marine atmospheres using XRD and SEM/Micro-Raman techniques , 2016 .

[5]  M. Morcillo,et al.  SEM/Micro-Raman Characterization of the Morphologies of Marine Atmospheric Corrosion Products Formed on Mild Steel , 2016 .

[6]  P. Refait,et al.  The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one , 1993 .

[7]  G. T. Burstein 1.5 – Passivity and Localised Corrosion , 1994 .

[8]  G. C. Wood,et al.  The corrosion of iron and zinc by atmospheric hydrogen chloride , 1993 .

[9]  Hiroshi Kihira,et al.  Control of Fe(O,OH)6 nano-network structures of rust for high atmospheric-corrosion resistance , 2005 .

[10]  Hiroshi Kihira,et al.  Corrosion protection mechanism of the advanced weathering steel (Fe-3.0Ni-0.40Cu) in a coastal area , 2004 .

[11]  X. Cheng,et al.  Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres , 2017 .

[12]  P. Refait,et al.  On the formation of -FeOOH (akaganite) in chloride-containing environments , 2007 .

[13]  Kazuhiko Noda,et al.  Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions , 2000 .

[14]  W. K. Boyd,et al.  Corrosion of metals in the atmosphere , 1974 .

[15]  H. Schwitter,et al.  Influence of Accelerated Weathering on the Corrosion of Low‐Alloy Steels , 1980 .

[16]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[17]  Martin Stratmann,et al.  The Influence of Copper upon the Atmospheric Corrosion of Iron , 1987 .

[18]  T. Ohtsuka,et al.  Monitoring the development of rust layers on weathering steel using in situ Raman spectroscopy under wet-and-dry cyclic conditions , 2015, Journal of Solid State Electrochemistry.

[19]  U. Schwertmann,et al.  The Transformation of Lepidocrocite to Goethite , 1972 .

[20]  Yoshiaki Shimizu,et al.  Effect of NaCl on Rusting of Steel in Wet and Dry Corrosion Cycle , 1995 .

[21]  P. Refait,et al.  Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides , 2008 .

[22]  Akemi Yasukawa,et al.  Formation of magnetite in the presence of ferric oxyhydroxides , 1998 .

[23]  M. Morcillo,et al.  Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity , 2013 .

[24]  D. M. Buck Copper in Steel - The Influence on Corrosion. , 1913 .

[25]  Martin Stratmann,et al.  The influence of chromium on the atmospheric corrosion of steel , 2001 .

[26]  Daniel de la Fuente,et al.  On the mechanism of rust exfoliation in marine environments , 2017 .

[27]  E. Han,et al.  Effect of Ni on the ion-selectivity of rust layer on low alloy steel , 2007 .

[28]  K. Bartoň,et al.  Reaktionsmechanismus der atmosphärischen Korrosion der Metalle in feuchter und mit Schwefeldioxyd verunreinigter Luft , 1959 .

[29]  P. Refait,et al.  The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite , 1997 .

[30]  G. M. Florianovich,et al.  On the mechanism of the anodic dissolution of iron in acid solutions , 1967 .

[31]  Joh.‐E. Hiller,et al.  Phasenumwandlungen im Rost , 1966 .

[32]  T. Ishikawa,et al.  Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media , 2014 .

[33]  Masato Yamashita,et al.  Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge , 2007 .

[34]  Iván Díaz,et al.  Characterization of corrosion products formed on Ni 2.4 wt%–Cu 0.5 wt%–Cr 0.5 wt% weathering steel exposed in marine atmospheres , 2014 .

[35]  M. Morcillo,et al.  Scanning electron microscopy/micro-Raman: A very useful technique for characterizing the morphologies of rust phases formed on carbon steel in atmospheric exposures , 2016 .

[36]  M. Morcillo,et al.  An attempt to classify the morphologies presented by different rust phases formed during the exposure of carbon steel to marine atmospheres , 2016 .

[37]  Ashutosh Kumar Singh,et al.  Mössbauer and x-ray diffraction phase analysis of rusts from atmospheric test sites with different environments in Sweden , 1985 .

[38]  Akemi Yasukawa,et al.  Characterization of Rust on Weathering Steel by Gas Adsorption , 2001 .

[39]  R. Snyder,et al.  RIR - Measurement and Use in Quantitative XRD , 1988, Powder Diffraction.

[40]  Hiroshi Kihira,et al.  Creation of Alloy Design Concept for Anti Air-Born Salinity Weathering Steel , 2000 .

[41]  Desmond C. Cook The Corrosion of High Performance Steel in Adverse Environments , 2005 .

[42]  Iván Díaz,et al.  Rust exfoliation on carbon steels in chloride-rich atmospheres , 2015 .

[43]  M. Abdelmoula,et al.  Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions , 1998 .

[44]  Martin Stratmann,et al.  An electrochemical study of phase-transitions in rust layers , 1983 .

[45]  Iván Díaz,et al.  Effect of Cu, Cr and Ni alloying elements on mechanical properties and atmospheric corrosion resistance of weathering steels in marine atmospheres of different aggressivities , 2018 .

[46]  M. Morcillo,et al.  Weathering steels: From empirical development to scientific design. A review , 2014 .