Theory, analysis and applications of 2D global illumination

We investigate global illumination in 2D and show how this simplified problem domain leads to practical insights for 3D rendering. We first derive a full theory of 2D light transport by introducing 2D analogs to radiometric quantities such as flux and radiance, and deriving a 2D rendering equation. We use our theory to show how to implement algorithms such as Monte Carlo raytracing, path tracing, irradiance caching, and photon mapping in 2D, and demonstrate that these algorithms can be analyzed more easily in this domain while still providing insights for 3D rendering. We apply our theory to develop several practical improvements to the irradiance caching algorithm. We perform a full second-order analysis of diffuse indirect illumination, first in 2D, and then in 3D by deriving the irradiance Hessian, and show how this leads to increased accuracy and performance for irradiance caching. We propose second-order Taylor expansion from cache points, which results in more accurate irradiance reconstruction. We also introduce a novel error metric to guide cache point placement by analyzing the error produced by irradiance caching. Our error metric naturally supports anisotropic reconstruction and, in our preliminary study, resulted in an order of magnitude less error than the “split-sphere” heuristic when using the same number of cache points.

[1]  Frédo Durand,et al.  Radiosity in flatland made visibly simple: using the visibility complex for lighting simulation of dynamic scenes in flatland , 1996, SCG '96.

[2]  J. Zára,et al.  Making radiance and irradiance caching practical: adaptive caching and neighbor clamping , 2006, EGSR '06.

[3]  Arnauld Lamorlette,et al.  An approximate global illumination system for computer generated films , 2004, SIGGRAPH 2004.

[4]  James Arvo,et al.  Particle transport and image synthesis , 1990, SIGGRAPH.

[5]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[6]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[7]  Frédo Durand,et al.  A frequency analysis of light transport , 2005, SIGGRAPH '05.

[8]  Sumanta N. Pattanaik,et al.  Improved radiance gradient computation , 2005, SCCG '05.

[9]  Gregory J. Ward,et al.  A ray tracing solution for diffuse interreflection , 2008, SIGGRAPH '08.

[10]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[11]  François X. Sillion,et al.  An Exhaustive Error‐Bounding Algorithm for Hierarchical Radiosity , 1998, Comput. Graph. Forum.

[12]  François X. Sillion,et al.  Accurate Computation of the Radiosity Gradient for Constant and Linear Emitters , 1995, Rendering Techniques.

[13]  Adam Arbree,et al.  To appear in the ACM SIGGRAPH conference proceedings Lightcuts: A Scalable Approach to Illumination , 2022 .

[14]  Paul S. Heckbert,et al.  Irradiance gradients , 2008, SIGGRAPH '08.

[15]  Frédo Durand,et al.  Radiosity for dynamic scenes in flatland with the visibility complex , 1996, Comput. Graph. Forum.

[16]  Matthias Zwicker,et al.  Radiance caching for participating media , 2008, TOGS.

[17]  Scott Daly,et al.  Digital Images and Human Vision , 1993 .

[18]  Andrew B. Watson,et al.  Digital images and human vision , 1993 .

[19]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.

[20]  Ravi Ramamoorthi,et al.  A first-order analysis of lighting, shading, and shadows , 2007, TOGS.

[21]  Scott J. Daly,et al.  Visible differences predictor: an algorithm for the assessment of image fidelity , 1992, Electronic Imaging.

[22]  Paul S. Heckhert,et al.  Radiosity in Flatland , 1992 .

[23]  B. Hawkins,et al.  A framework: , 2020, Harmful Interaction between the Living and the Dead in Greek Tragedy.

[24]  Hans-Peter Seidel,et al.  Anisotropic Radiance‐Cache Splatting for Efficiently Computing High‐Quality Global Illumination with Lightcuts , 2009, Comput. Graph. Forum.

[25]  James Arvo,et al.  The irradiance Jacobian for partially occluded polyhedral sources , 1994, SIGGRAPH.

[26]  James Arvo,et al.  A framework for the analysis of error in global illumination algorithms , 1994, SIGGRAPH.

[27]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[28]  Peter Shirley Time complexity of Monte Carlo radiosity , 1992, Comput. Graph..

[29]  E. Abbott,et al.  Flatland: a Romance of Many Dimensions , 1884, Nature.

[30]  Per H. Christensen Faster Photon Map Global Illumination , 1999, J. Graphics, GPU, & Game Tools.

[31]  Hans-Peter Seidel,et al.  Spherical harmonic gradients for mid-range illumination , 2004 .

[32]  Nicolas Holzschuch Le contrôle de l'erreur dans la méthode de radiosité hiérarchique , 1996 .

[33]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[34]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[35]  Michel Pocciola,et al.  Graphics in Flatland Revisited , 1990, SWAT.

[36]  Paul S. Heckbert Radiosity in Flatland , 1992, Comput. Graph. Forum.

[37]  E. Abbott Flatland: A Romance of Many Dimensions , 1884 .

[38]  F. Durand,et al.  A frequency analysis of light transport , 2005, ACM Trans. Graph..

[39]  G. W. Larson,et al.  Rendering with radiance - the art and science of lighting visualization , 2004, Morgan Kaufmann series in computer graphics and geometric modeling.

[40]  Philippe Bekaert,et al.  Advanced Global Illumination, Second Edition , 2006 .

[41]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[42]  Sumanta N. Pattanaik,et al.  Radiance caching for efficient global illumination computation , 2008, IEEE Transactions on Visualization and Computer Graphics.

[43]  Arnauld Lamorlette,et al.  An approximate global illumination system for computer generated films , 2004, ACM Trans. Graph..

[44]  Kadi Bouatouch,et al.  Radiance caching for efficient global illumination computation , 2005 .

[45]  Matthias Zwicker,et al.  Irradiance Gradients in the Presence of Participating Media and Occlusions , 2008, Comput. Graph. Forum.