Canonical Forms For State–Space Descriptions

[1]  R E Kalman,et al.  CANONICAL STRUCTURE OF LINEAR DYNAMICAL SYSTEMS. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Luenberger Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.

[3]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[4]  V. Popov Some properties of the control systems with irreducible matrix — Transfer functions , 1970 .

[5]  Pavol Brunovský,et al.  A classification of linear controllable systems , 1970, Kybernetika.

[6]  R. Kaiman KRONECKER INVARIANTS AND FEEDBACK , 1972 .

[7]  W. Wolovich State-space and multivariable theory , 1972 .

[8]  V. Popov Invariant Description of Linear, Time-Invariant Controllable Systems , 1972 .

[9]  James S. Thorp,et al.  The singular pencil of a linear dynamical system , 1973 .

[10]  W. Wolovich Linear multivariable systems , 1974 .

[11]  J. Willems,et al.  Parametrizations of linear dynamical systems: Canonical forms and identifiability , 1974 .

[12]  B. Dickinson,et al.  Canonical matrix fraction and state-space descriptions for deterministic and stochastic linear systems , 1974 .

[13]  M. Denham Canonical forms for the identification of multivariable linear systems , 1974 .

[14]  A. E. Eckberg,et al.  On the Dimensions of Controllability Subspaces: A Characterization via Polynomial Matrices and Kronecker Invariants , 1975 .

[15]  Jr. G. Forney,et al.  Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .

[16]  J. Pearson Linear multivariable control, a geometric approach , 1977 .

[17]  B. Molinari Structural invariants of linear multivariable systems , 1978 .

[18]  P. Dooren The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .

[19]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[20]  D. Limebeer,et al.  Structure and Smith-MacMillan form of a rational matrix at infinity , 1982 .

[21]  Nicos Karcanias,et al.  Right, left characteristic sequences and column, row minimal indices of a singular pencil , 1988 .

[22]  Jean Jacques Loiseau,et al.  Feedback canonical forms of singular systems , 1991, Kybernetika.

[23]  N. Karcanias Minimal Bases of Matrix Pencils: Algebraic Toeplitz Structure and Geometric Properties , 1994 .

[24]  Michel Malabre,et al.  Simultaneous disturbance rejection and regular row by row decoupling with stability: a geometric approach , 1995, IEEE Trans. Autom. Control..

[25]  Nicos Karcanias,et al.  Canonical forms for descriptor systems under restricted system equivalence , 1997, Autom..