Canonical Forms For State–Space Descriptions
暂无分享,去创建一个
[1] R E Kalman,et al. CANONICAL STRUCTURE OF LINEAR DYNAMICAL SYSTEMS. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[2] D. Luenberger. Canonical forms for linear multivariable systems , 1967, IEEE Transactions on Automatic Control.
[3] Peter Lancaster,et al. The theory of matrices , 1969 .
[4] V. Popov. Some properties of the control systems with irreducible matrix — Transfer functions , 1970 .
[5] Pavol Brunovský,et al. A classification of linear controllable systems , 1970, Kybernetika.
[6] R. Kaiman. KRONECKER INVARIANTS AND FEEDBACK , 1972 .
[7] W. Wolovich. State-space and multivariable theory , 1972 .
[8] V. Popov. Invariant Description of Linear, Time-Invariant Controllable Systems , 1972 .
[9] James S. Thorp,et al. The singular pencil of a linear dynamical system , 1973 .
[10] W. Wolovich. Linear multivariable systems , 1974 .
[11] J. Willems,et al. Parametrizations of linear dynamical systems: Canonical forms and identifiability , 1974 .
[12] B. Dickinson,et al. Canonical matrix fraction and state-space descriptions for deterministic and stochastic linear systems , 1974 .
[13] M. Denham. Canonical forms for the identification of multivariable linear systems , 1974 .
[14] A. E. Eckberg,et al. On the Dimensions of Controllability Subspaces: A Characterization via Polynomial Matrices and Kronecker Invariants , 1975 .
[15] Jr. G. Forney,et al. Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems , 1975 .
[16] J. Pearson. Linear multivariable control, a geometric approach , 1977 .
[17] B. Molinari. Structural invariants of linear multivariable systems , 1978 .
[18] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .
[19] S. Liberty,et al. Linear Systems , 2010, Scientific Parallel Computing.
[20] D. Limebeer,et al. Structure and Smith-MacMillan form of a rational matrix at infinity , 1982 .
[21] Nicos Karcanias,et al. Right, left characteristic sequences and column, row minimal indices of a singular pencil , 1988 .
[22] Jean Jacques Loiseau,et al. Feedback canonical forms of singular systems , 1991, Kybernetika.
[23] N. Karcanias. Minimal Bases of Matrix Pencils: Algebraic Toeplitz Structure and Geometric Properties , 1994 .
[24] Michel Malabre,et al. Simultaneous disturbance rejection and regular row by row decoupling with stability: a geometric approach , 1995, IEEE Trans. Autom. Control..
[25] Nicos Karcanias,et al. Canonical forms for descriptor systems under restricted system equivalence , 1997, Autom..