Fall detection in walking robots by multi-way principal component analysis

Large disturbances can cause a biped to fall. If an upcoming fall can be detected, damage can be minimized or the fall can be prevented. We introduce the multi-way principal component analysis (MPCA) method for the detection of upcoming falls. We study the detection capability of the MPCA method in a simulation study with the simplest walking model. The results of this study show that the MPCA method is able to predict a fall up to four steps in advance in the case of single disturbances. In the case of random disturbances the MPCA method has a successful detection probability of up to 90%.

[1]  M. Coleman,et al.  The simplest walking model: stability, complexity, and scaling. , 1998, Journal of biomechanical engineering.

[2]  Luis A. Escobar,et al.  Statistical Intervals: A Guide for Practitioners , 1991 .

[3]  B. Kowalski,et al.  Partial least-squares regression: a tutorial , 1986 .

[4]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[5]  Paul Nomikos,et al.  Statistical Process Control of Batch Processes , 1995 .

[6]  Martijn Wisse,et al.  Swing-Leg Retraction for Limit Cycle Walkers Improves Disturbance Rejection , 2008, IEEE Transactions on Robotics.

[7]  John F. MacGregor,et al.  Adaptive batch monitoring using hierarchical PCA , 1998 .

[8]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[9]  Martijn Wisse,et al.  A Disturbance Rejection Measure for Limit Cycle Walkers: The Gait Sensitivity Norm , 2007, IEEE Transactions on Robotics.

[10]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  J. Macgregor,et al.  Monitoring batch processes using multiway principal component analysis , 1994 .

[12]  M Vukobratović,et al.  On the stability of biped locomotion. , 1970, IEEE transactions on bio-medical engineering.

[13]  Matthias Hackel,et al.  Humanoid Robots, Human-like Machines , 2007 .

[14]  J. Macgregor,et al.  Experiences with industrial applications of projection methods for multivariate statistical process control , 1996 .

[15]  John S. Oakland,et al.  Statistical Process Control , 2018 .

[16]  Daan G. E. Hobbelen,et al.  Limit Cycle Walking , 2007 .

[17]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Martijn Wisse,et al.  Ankle Actuation for Limit Cycle Walkers , 2008, Int. J. Robotics Res..

[19]  Age K. Smilde,et al.  Fault detection properties of global, local and time evolving models for batch process monitoring , 2005 .