A comparison of homogenization and large deviations, with applications to wavefront propagation

We consider the combined effects of homogenization and large deviations in a stochastic differential equation. We show that there are three regimes, depending on the relative rates at which the small viscosity parameter and the homogenization parameter tend to zero. We prove some large-deviations-type estimates, and then apply these results to study wavefronts in both a single reaction-diffusion equation and in a system of reaction-diffusion equations.

[1]  George Papanicolaou,et al.  Reaction-diffusion fronts in periodically layered media , 1991 .

[2]  S M Kozlov,et al.  Averaging on a Background of Vanishing Viscosity , 1991 .

[3]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[4]  A. Veretennikov On large deviations for SDEs with small diffusion and averaging , 2000 .

[5]  Tosio Kato Perturbation theory for linear operators , 1966 .

[6]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[7]  Mark Freidlin,et al.  On the dirichlet problem for a class of second order pde systems with small parameter , 1990 .

[8]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[9]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[10]  J. Norris Long-Time Behaviour of Heat Flow: Global Estimates and Exact Asymptotics , 1997 .

[11]  J. Gärtner On Large Deviations from the Invariant Measure , 1977 .

[12]  Richard B. Sowers,et al.  Large Deviations for a Reaction-Diffusion Equation with Non-Gaussian Perturbations , 1992 .

[13]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[14]  George Papanicolaou,et al.  Convection Enhanced Diffusion for Periodic Flows , 1994, SIAM J. Appl. Math..

[15]  Andrew J. Majda,et al.  Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales , 1994 .

[16]  D. Stroock,et al.  Large deviations and stochastic flows of diffeomorphisms , 1988 .

[17]  Daniel W. Stroock,et al.  Estimates on the Fundamental Solution to Heat Flows With Uniformly Elliptic Coefficients , 1991 .

[18]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[19]  Heat Kernel Bounds and Homogenization of Elliptic Operators , 1994 .

[20]  M. Freidlin,et al.  Wave front propagation and large deviations for diffusion –transmutation process , 1996 .

[21]  R. Ellis,et al.  LARGE DEVIATIONS FOR A GENERAL-CLASS OF RANDOM VECTORS , 1984 .

[22]  Paolo Baldi,et al.  Large deviations for diffusion processes with homogenization and applications , 1991 .

[23]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[24]  Mark Freidlin,et al.  Semi-linear pde's and limit theorems for large deviations , 1992 .