From the spherical to an elliptic form of the dynamic RBF neural network influence field

We introduce a new neural network architecture corresponding to the dynamic RBF with an elliptic influence field. The dynamic aspect is obtained with a self-connection, and the elliptic influence field form, by adding a supplementary RBF layer. The modified RBF neural network gives good results in monitoring applications.

[1]  Giovanni Soda,et al.  Unified Integration of Explicit Knowledge and Learning by Example in Recurrent Networks , 1995, IEEE Trans. Knowl. Data Eng..

[2]  Paolo Frasconi,et al.  Computational capabilities of local-feedback recurrent networks acting as finite-state machines , 1996, IEEE Trans. Neural Networks.

[3]  Marios M. Polycarpou,et al.  Neural-network-based robust fault diagnosis in robotic systems , 1997, IEEE Trans. Neural Networks.

[4]  M. Basseville,et al.  Surveillance et diagnostic de systèmes dynamiques: approches complémentaires du traitement de signal et de l'intelligence artificielle , 1996 .

[5]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[6]  Michael R. Berthold,et al.  A time delay radial basis function network for phoneme recognition , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[7]  David S. Broomhead,et al.  Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..

[8]  D. Broomhead,et al.  Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .

[9]  Raghunathan Rengaswamy,et al.  A syntactic pattern-recognition approach for process monitoring and fault diagnosis , 1995 .

[10]  David S. Touretzky,et al.  Advances in neural information processing systems 2 , 1989 .

[11]  Racoceanu Daniel,et al.  APPLICATION OF THE DYNAMIC RBF NETWORK IN A MONITORING PROBLEM OF THE PRODUCTION SYSTEMS , 2002 .

[12]  H. Demmou,et al.  Temporal sequence learning with neural networks for process fault detection , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.

[13]  ’. aboratoired,et al.  APPLICATION OF THE DYNAMIC RBF NETWORK IN A MONITORING PROBLEM OF THE PRODUCTION SYSTEMS , 2002 .

[14]  Noureddine Zerhouni,et al.  The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA.

[15]  Hervé Poulard Statistiques et réseaux de neurones pour un système de diagnostic : application au diagnostic de pannes automobiles. (Statistic and neural networks for a diagnosis system: Application to automotive failure detection) , 1996 .

[16]  Venkat Venkatasubramanian,et al.  Challenges in the industrial applications of fault diagnostic systems , 2000 .

[17]  B. Achiriloaie,et al.  VI REFERENCES , 1961 .

[18]  Marios M. Polycarpou,et al.  Neural network based fault detection in robotic manipulators , 1998, IEEE Trans. Robotics Autom..

[19]  D. L. Reilly,et al.  A neural model for category learning , 1982, Biological Cybernetics.

[20]  Jonathan S. Maltz,et al.  NEURAL NETWORKS FOR PNEUMATIC ACTUATOR FAULT DETECTION , 1999 .

[21]  P. E. Keller,et al.  Three neural network based, sensor systems for environmental monitoring , 1994, Proceedings of ELECTRO '94.

[22]  Z. Ryad,et al.  The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).

[23]  Stephen Jose Hanson,et al.  A Neural Network Autoassociator for Induction Motor Failure Prediction , 1995, NIPS.