From the spherical to an elliptic form of the dynamic RBF neural network influence field
暂无分享,去创建一个
[1] Giovanni Soda,et al. Unified Integration of Explicit Knowledge and Learning by Example in Recurrent Networks , 1995, IEEE Trans. Knowl. Data Eng..
[2] Paolo Frasconi,et al. Computational capabilities of local-feedback recurrent networks acting as finite-state machines , 1996, IEEE Trans. Neural Networks.
[3] Marios M. Polycarpou,et al. Neural-network-based robust fault diagnosis in robotic systems , 1997, IEEE Trans. Neural Networks.
[4] M. Basseville,et al. Surveillance et diagnostic de systèmes dynamiques: approches complémentaires du traitement de signal et de l'intelligence artificielle , 1996 .
[5] Jeffrey L. Elman,et al. Finding Structure in Time , 1990, Cogn. Sci..
[6] Michael R. Berthold,et al. A time delay radial basis function network for phoneme recognition , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).
[7] David S. Broomhead,et al. Multivariable Functional Interpolation and Adaptive Networks , 1988, Complex Syst..
[8] D. Broomhead,et al. Radial Basis Functions, Multi-Variable Functional Interpolation and Adaptive Networks , 1988 .
[9] Raghunathan Rengaswamy,et al. A syntactic pattern-recognition approach for process monitoring and fault diagnosis , 1995 .
[10] David S. Touretzky,et al. Advances in neural information processing systems 2 , 1989 .
[11] Racoceanu Daniel,et al. APPLICATION OF THE DYNAMIC RBF NETWORK IN A MONITORING PROBLEM OF THE PRODUCTION SYSTEMS , 2002 .
[12] H. Demmou,et al. Temporal sequence learning with neural networks for process fault detection , 1993, Proceedings of IEEE Systems Man and Cybernetics Conference - SMC.
[13] ’. aboratoired,et al. APPLICATION OF THE DYNAMIC RBF NETWORK IN A MONITORING PROBLEM OF THE PRODUCTION SYSTEMS , 2002 .
[14] Noureddine Zerhouni,et al. The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA.
[15] Hervé Poulard. Statistiques et réseaux de neurones pour un système de diagnostic : application au diagnostic de pannes automobiles. (Statistic and neural networks for a diagnosis system: Application to automotive failure detection) , 1996 .
[16] Venkat Venkatasubramanian,et al. Challenges in the industrial applications of fault diagnostic systems , 2000 .
[17] B. Achiriloaie,et al. VI REFERENCES , 1961 .
[18] Marios M. Polycarpou,et al. Neural network based fault detection in robotic manipulators , 1998, IEEE Trans. Robotics Autom..
[19] D. L. Reilly,et al. A neural model for category learning , 1982, Biological Cybernetics.
[20] Jonathan S. Maltz,et al. NEURAL NETWORKS FOR PNEUMATIC ACTUATOR FAULT DETECTION , 1999 .
[21] P. E. Keller,et al. Three neural network based, sensor systems for environmental monitoring , 1994, Proceedings of ELECTRO '94.
[22] Z. Ryad,et al. The RRBF. Dynamic representation of time in radial basis function network , 2001, ETFA 2001. 8th International Conference on Emerging Technologies and Factory Automation. Proceedings (Cat. No.01TH8597).
[23] Stephen Jose Hanson,et al. A Neural Network Autoassociator for Induction Motor Failure Prediction , 1995, NIPS.