On the fractional signals and systems

A look into fractional calculus and its applications from the signal processing point of view is done in this paper. A coherent approach to the fractional derivative is presented, leading to notions that are not only compatible with the classic but also constitute a true generalization. This means that the classic are recovered when the fractional domain is left. This happens in particular with the impulse response and transfer function. An interesting feature of the systems is the causality that the fractional derivative imposes. The main properties of the derivatives and their representations are presented. A brief and general study of the fractional linear systems is done, by showing how to compute the impulse, step and frequency responses, how to test the stability and how to insert the initial conditions. The practical realization problem is focussed and it is shown how to perform the input-ouput computations. Some biomedical applications are described.

[1]  R. Voss,et al.  ‘1/fnoise’ in music and speech , 1975, Nature.

[2]  James P. Keener,et al.  Mathematical physiology , 1998 .

[3]  Shaher Momani,et al.  Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations , 2007, Comput. Math. Appl..

[4]  Michael C. Constantinou,et al.  Fractional‐Derivative Maxwell Model for Viscous Dampers , 1991 .

[5]  Nabil T. Shawagfeh,et al.  Analytical approximate solutions for nonlinear fractional differential equations , 2002, Appl. Math. Comput..

[6]  Kamel Al-khaled,et al.  Numerical solutions for systems of fractional differential equations by the decomposition method , 2005, Appl. Math. Comput..

[7]  Margarita Rivero,et al.  On Theory of Systems of Fractional Linear Differential Equations , 2005 .

[8]  Manuel Duarte Ortigueira,et al.  Introduction to fractional linear systems. Part 1. Continuous-time case , 2000 .

[9]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[10]  Fawang Liu,et al.  The fundamental solution of the space-time fractional advection-dispersion equation , 2005 .

[11]  Manuel Duarte Ortigueira,et al.  A new least-squares approach to differintegration modeling , 2006, Signal Process..

[12]  Shaher Momani,et al.  An explicit and numerical solutions of the fractional KdV equation , 2005, Math. Comput. Simul..

[13]  Peter Linz,et al.  Analytical and numerical methods for Volterra equations , 1985, SIAM studies in applied and numerical mathematics.

[14]  D. Werner,et al.  Fractional Paradigm in Electromagnetic Theory , 2000 .

[15]  A. Oustaloup La dérivation non entière , 1995 .

[16]  A. C. Sim,et al.  Distribution Theory and Transform Analysis , 1966 .

[17]  Alan L. Andrew,et al.  Asymptotic correction and inverse eigenvalue problems: an overview , 2005 .

[18]  K. Diethelm Mittag-Leffler Functions , 2010 .

[19]  M. S. Keshner 1/f noise , 1982, Proceedings of the IEEE.

[20]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[21]  I. Podlubny Matrix Approach to Discrete Fractional Calculus , 2000 .

[22]  Margarita Rivero,et al.  Linear Differential Equations of Fractional Order , 2007 .

[23]  C. Lubich,et al.  Fractional linear multistep methods for Abel-Volterra integral equations of the second kind , 1985 .

[24]  J. Thorson,et al.  Distributed Relaxation Processes in Sensory Adaptation , 1974, Science.

[25]  Francesco Mainardi,et al.  The time fractional diffusion-wave equation , 1995 .

[26]  George Adomian,et al.  Solving Frontier Problems of Physics: The Decomposition Method , 1993 .

[27]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[28]  Shaher Momani,et al.  Solving systems of fractional differential equations by homotopy-perturbation method , 2008 .

[29]  Y. Chen,et al.  Realization of fractional order controllers , 2003 .

[30]  Luise Blank,et al.  Numerical Treatment of Differential Equations of Fractional Order , 1996 .

[31]  Alain Oustaloup,et al.  Fractional order sinusoidal oscillators: Optimization and their use in highly linear FM modulation , 1981 .

[32]  B. Achar,et al.  Mittag–Leffler functions and transmission lines , 2002 .

[33]  B. Onaral,et al.  Linear approximation of transfer function with a pole of fractional power , 1984 .

[34]  J. T.,et al.  Creative Evolution , 1911, Nature.

[35]  E. S. Ismail,et al.  Approximate analytical solution to fractional modified KdV equations , 2009, Math. Comput. Model..

[37]  Mohamad Adnan Al-Alaoui,et al.  Novel digital integrator and differentiator , 1993 .

[38]  V. Marinca,et al.  An Approximate Solution for One-Dimensional Weakly Nonlinear Oscillations , 2002 .

[39]  Marc Weilbeer,et al.  Efficient Numerical Methods for Fractional Differential Equations and their Analytical Background , 2005 .

[40]  Ji-Huan He,et al.  Variational principles for some nonlinear partial differential equations with variable coefficients , 2004 .

[41]  Hao Wang,et al.  Nonlinear rheology and flow-induced structure in a concentrated spherical silica suspension , 1998 .

[42]  Thomas J. Anastasio,et al.  Nonuniformity in the linear network model of the oculomotor integrator produces approximately fractional-order dynamics and more realistic neuron behavior , 1998, Biological Cybernetics.

[43]  M. Ortigueira,et al.  On the relation between the fractional Brownian motion and the fractional derivatives , 2008 .

[44]  J. A. Tenreiro Machado,et al.  Discrete-time fractional-order controllers , 2001 .

[45]  L. Dorcak,et al.  Two digital realizations of fractional controllers: Application to temperature control of a solid , 2001, 2001 European Control Conference (ECC).

[46]  Manuel Duarte Ortigueira,et al.  A coherent approach to non-integer order derivatives , 2006, Signal Process..

[47]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[48]  Manuel Duarte Ortigueira,et al.  From Differences to Derivatives , 2004 .

[49]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[50]  Y. Chen,et al.  Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives—an Expository Review , 2004 .

[51]  Masayuki Itagaki,et al.  Deviations of capacitive and inductive loops in the electrochemical impedance of a dissolving iron electrode. , 2002, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[52]  Dogan Kaya,et al.  Comparing numerical methods for the solutions of systems of ordinary differential equations , 2004, Appl. Math. Lett..

[53]  Horst R. Beyer,et al.  Definition of physically consistent damping laws with fractional derivatives , 1995 .

[54]  J. Sabatier,et al.  The CRONE aproach: Theoretical developments and major applications , 2006 .

[55]  Walter Willinger,et al.  Self-Similarity in High-Speed Packet Traffic: Analysis and Modeling of Ethernet Traffic Measurements , 1995 .

[56]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[57]  Alain Oustaloup,et al.  The CRONE Control of Resonant Plants: Application to a Flexible Transmission , 1995, Eur. J. Control.

[58]  Xavier Moreau,et al.  Past and some recent CRONE group applications of fractional differentiation (Part 1) , 2007 .

[59]  J. Machado Analysis and design of fractional-order digital control systems , 1997 .

[60]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[61]  Masahiro Iwahashi,et al.  A realization of fractional power-law circuit using OTAs , 1998, IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242).

[62]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[63]  Manuel Duarte Ortigueira,et al.  Riesz potential operators and inverses via fractional centred derivatives , 2006, Int. J. Math. Math. Sci..

[64]  Tian-Hu Hao,et al.  Search for Variational Principles in Electrodynamics by Lagrange Method , 2005 .

[65]  Manuel Duarte Ortigueira,et al.  On the initial conditions in continuous-time fractional linear systems , 2003, Signal Process..

[66]  W Greatbatch,et al.  MYOCARDIAL AND ENDOCARDIAC ELECTRODES FOR CHRONIC IMPLANTATION , 1968, Annals of the New York Academy of Sciences.

[67]  Manuel D. Ortigueira,et al.  System initial conditions vs derivative initial conditions , 2010, Comput. Math. Appl..

[68]  Manuel Duarte Ortigueira,et al.  Introduction to fractional linear systems. Part 2. Discrete-time case , 2000 .

[69]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[70]  I. Schäfer,et al.  Modelling of coils using fractional derivatives , 2006 .

[71]  C. Lubich,et al.  On the Stability of Linear Multistep Methods for Volterra Convolution Equations , 1983 .

[72]  Kai Diethelm,et al.  Numerical solution of fractional order differential equations by extrapolation , 1997, Numerical Algorithms.

[73]  Ji-Huan He A coupling method of a homotopy technique and a perturbation technique for non-linear problems , 2000 .

[74]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[75]  Manuel Duarte Ortigueira,et al.  Which differintegration? [fractional calculus] , 2005 .

[76]  Alain Oustaloup,et al.  Frequency-band complex noninteger differentiator: characterization and synthesis , 2000 .

[77]  Manuel Duarte Ortigueira,et al.  Pseudo-fractional ARMA modelling using a double levinson recursion , 2007 .

[78]  Margarita Rivero,et al.  On systems of linear fractional differential equations with constant coefficients , 2007, Appl. Math. Comput..

[79]  J. A. Tenreiro Machado,et al.  Pole-zero approximations of digital fractional-order integrators and differentiators using signal mo , 2005 .

[80]  Mickael Tanter,et al.  MR elastography of breast lesions: Understanding the solid/liquid duality can improve the specificity of contrast‐enhanced MR mammography , 2007, Magnetic resonance in medicine.

[81]  Margarita Rivero,et al.  Linear fractional differential equations with variable coefficients , 2008, Appl. Math. Lett..

[82]  Alan D. Freed,et al.  On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity , 1999 .

[83]  Manuel Duarte Ortigueira,et al.  Identifying a Transfer Function From a Frequency Response , 2007 .

[84]  Kai Diethelm,et al.  Generalized compound quadrature formulae for finite-part integrals , 1997 .

[85]  S. Saha Ray,et al.  SOLUTION OF AN EXTRAORDINARY DIFFERENTIAL EQUATION BY ADOMIAN DECOMPOSITION METHOD , 2004 .

[86]  Mark J Shelhamer,et al.  Nonlinear Dynamics in Physiology: A State-space Approach , 2006 .

[87]  R. Gorenflo,et al.  Time Fractional Diffusion: A Discrete Random Walk Approach , 2002 .

[88]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[89]  B. Kuttner,et al.  On Differences of Fractional Order , 1957 .

[90]  Hong-Mei Liu,et al.  Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method , 2005 .

[91]  Manuel Ortigueira,et al.  Special Issue on Fractional signal Processing and applications , 2003 .

[92]  S. Momani,et al.  Numerical comparison of methods for solving linear differential equations of fractional order , 2007 .

[93]  M. Ortigueira,et al.  THE INITIAL CONDITIONS OF RIEMANN-LIOUVILLE AND CAPUTO DERIVATIVES , 2011 .

[94]  Shaher Momani,et al.  Numerical approach to differential equations of fractional order , 2007 .

[95]  José António Tenreiro Machado,et al.  Fractional calculus applications in signals and systems , 2006, Signal Processing.

[96]  Igor M. Sokolov,et al.  Physics of Fractal Operators , 2003 .

[97]  Fawang Liu,et al.  The time fractional diffusion equation and the advection-dispersion equation , 2005, The ANZIAM Journal.

[98]  Anders E Boström,et al.  Acoustic Interactions with Submerged Elastic Structures: Part IV: Nondestructive Testing, Acoustic Wave Propagation and Scattering , 2002 .

[99]  Sverre Grimnes,et al.  Bioimpedance and Bioelectricity Basics , 2000 .

[100]  Gary W. Bohannan Analog fractional order controller in a temperature control application , 2006 .

[101]  José António Tenreiro Machado,et al.  Fractional signal processing and applications , 2003, Signal Process..

[102]  E. A. Rawashdeh,et al.  Numerical solution of semidifferential equations by collocation method , 2006, Appl. Math. Comput..

[103]  Margarita Rivero,et al.  Fractional differential equations as alternative models to nonlinear differential equations , 2007, Appl. Math. Comput..

[104]  Ji-Huan He Variational iteration method – a kind of non-linear analytical technique: some examples , 1999 .

[105]  S. Momani,et al.  Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order , 2006 .

[106]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[107]  Raj Mittra,et al.  Frontiers in electromagnetics , 1999 .

[108]  Pankaj Kumar,et al.  An approximate method for numerical solution of fractional differential equations , 2006, Signal Process..

[109]  Yangquan Chen,et al.  A new IIR-type digital fractional order differentiator , 2003, Signal Process..

[110]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[111]  R. Voss,et al.  ’’1/f noise’’ in music: Music from 1/f noise , 1978 .

[112]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[113]  V. E. Tarasov,et al.  Fractional statistical mechanics. , 2006, Chaos.

[114]  I. Podlubny,et al.  Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives , 2005, math-ph/0512028.

[115]  Yaneer Bar-Yam,et al.  Dynamics Of Complex Systems , 2019 .

[116]  S. Westerlund Dead matter has memory , 1991 .

[117]  G. Drăgănescu,et al.  Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives , 2006 .

[118]  J. P. Clerc,et al.  a.c. response of fractal networks , 1984 .

[119]  I. Podlubny Fractional differential equations , 1998 .

[120]  Alain Oustaloup,et al.  Fractional system identification for lead acid battery state of charge estimation , 2006, Signal Process..

[121]  K. Diethelm,et al.  The Fracpece Subroutine for the Numerical Solution of Differential Equations of Fractional Order , 2002 .

[122]  Majid Ahmadi,et al.  Cascade realisation of the irrational immittance s , 1985 .

[123]  Aloknath Chakrabarti,et al.  The Adomian method applied to some extraordinary differential equations , 1995 .

[124]  L. Gaul,et al.  Damping description involving fractional operators , 1991 .

[125]  Manuel Duarte Ortigueira,et al.  Generalized GL Fractional Derivative and Its Laplace and Fourier Transform , 2009 .

[126]  Hong-Mei Liu,et al.  Variational Approach to Nonlinear Electrochemical System , 2004 .

[127]  R. Hilfer Applications Of Fractional Calculus In Physics , 2000 .

[128]  Shaher Momani,et al.  A numerical scheme for the solution of multi-order fractional differential equations , 2006, Appl. Math. Comput..

[129]  Khaled Omrani,et al.  The use of variational iteration method and homotopy perturbation method for solving two nonlinear equations , 2011 .

[130]  N. Engheta Fractional curl operator in electromagnetics , 1998 .

[131]  H. Sekine,et al.  General Use of the Lagrange Multiplier in Nonlinear Mathematical Physics1 , 1980 .

[132]  Asa Fenander,et al.  Modal synthesis when modeling damping by use of fractional derivatives , 1996 .

[133]  Igor Podlubny,et al.  Matrix approach to discretization of fractional derivatives and to solution of fractional differential equations and their systems , 2009, 2009 IEEE Conference on Emerging Technologies & Factory Automation.

[134]  S. Momani,et al.  An efficient method for solving systems of fractional integro-differential equations , 2006, Comput. Math. Appl..

[135]  Ji-Huan He Homotopy perturbation technique , 1999 .

[136]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[137]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[138]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[139]  G. Adomian A review of the decomposition method in applied mathematics , 1988 .

[140]  Vicente Feliú Batlle,et al.  Optimal Fractional Controllers for Rational Order Systems: A Special Case of the Wiener-Hopf Spectral Factorization Method , 2007, IEEE Transactions on Automatic Control.

[141]  Hossein Jafari,et al.  Solving a system of nonlinear fractional differential equations using Adomian decomposition , 2006 .

[142]  Ji-Huan He,et al.  Variational iteration method for autonomous ordinary differential systems , 2000, Appl. Math. Comput..

[143]  B. West Fractional Calculus in Bioengineering , 2007 .

[144]  Daniel H. Zavitz,et al.  The Electrode–Tissue Interface in Living Heart: Equivalent Circuit as a Function of Surface Area , 1998 .

[145]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[146]  Santanu Saha Ray,et al.  An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method , 2005, Appl. Math. Comput..

[147]  Francesco Mainardi,et al.  Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk , 2007, 0709.3990.

[148]  Ernst Hairer,et al.  FAST NUMERICAL SOLUTION OF NONLINEAR VOLTERRA CONVOLUTION EQUATIONS , 1985 .

[149]  Peter J. Mahon,et al.  Measurement and modelling of the high-power performance of carbon-based supercapacitors , 2000 .

[150]  N. Ford,et al.  Numerical Solution of the Bagley-Torvik Equation , 2002, BIT Numerical Mathematics.

[151]  L. M. B. C. Campos,et al.  On a Concept of Derivative of Complex Order with Applications to Special Functions , 1984 .

[152]  F. Mainardi,et al.  Fractals and fractional calculus in continuum mechanics , 1997 .

[153]  Thomas J. Anastasio,et al.  The fractional-order dynamics of brainstem vestibulo-oculomotor neurons , 1994, Biological Cybernetics.

[154]  Necdet Bildik,et al.  The Use of Variational Iteration Method, Differential Transform Method and Adomian Decomposition Method for Solving Different Types of Nonlinear Partial Differential Equations , 2006 .

[155]  Blas M. Vinagre,et al.  Microelectronic Implementations of Fractional-Order Integrodifferential Operators , 2007 .

[156]  Hossein Jafari,et al.  Adomian decomposition: a tool for solving a system of fractional differential equations , 2005 .

[157]  Varsha Daftardar-Gejji,et al.  An iterative method for solving nonlinear functional equations , 2006 .

[158]  Prince Abdullah bin Ghazi,et al.  Modified homotopy perturbation method : Application to quadratic Riccati differential equation of fractional order , 2007 .

[159]  H. L. Arora,et al.  Solution of non-integer order differential equations via the adomian decomposition method , 1993 .

[160]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[161]  M. Caputo Linear models of dissipation whose Q is almost frequency independent , 1966 .

[162]  Ji-Huan He,et al.  Variational iteration method for delay differential equations , 1997 .

[163]  Asghar Ghorbani,et al.  He's Homotopy Perturbation Method for Calculating Adomian Polynomials , 2007 .

[164]  Md. Sazzad Hossien Chowdhury,et al.  Assessment of decomposition method for linear and nonlinearfractional differential equations , 2007 .

[165]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[166]  Damian Craiem,et al.  A fractional derivative model to describe arterial viscoelasticity. , 2007, Biorheology.

[167]  M. A. Chaudhry,et al.  On a Class of Incomplete Gamma Functions with Applications , 2001 .

[168]  C. Lubich Discretized fractional calculus , 1986 .

[169]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[170]  Shaher Momani,et al.  Application of He’s variational iteration method to Helmholtz equation , 2006 .

[171]  Shaher Momani,et al.  Homotopy perturbation method for nonlinear partial differential equations of fractional order , 2007 .