Algorithm 816: r2d2lri: an algorithm for automatic two-dimensional cubature

r2d2lri is a non-adaptive algorithm implemented in C++ for performing automatic cubature over a wide variety of finite and non-finite two-dimensional domains. The core integrator uses a sixth-order Sidi transformation applied to a sequence of embedded lattice rules in such a fashion as to incur virtually no computational overhead. Even for integrals over non-finite domains, for which several non-finite to finite transformations may be attempted, the algorithm remains very fast. Performance data are presented which demonstrate both the effectiveness and efficiency of r2d2lri, taking into account the number of function evaluations needed and the execution speed.

[1]  Christoph Uberhuber Numerical Computation, Volume I , 1997 .

[2]  Ronald Cools,et al.  Construction of fully symmetric cubature formulae of degree 4 k -3 for fully symmetric planar regions , 1985 .

[3]  George Szekeres,et al.  Numerical evaluation of high-dimensional integrals , 1964 .

[4]  Christoph W. Ueberhuber Numerical Computation 1 , 1997 .

[5]  Ronald Cools,et al.  Algorithm 764: Cubpack++: a C++ package for automatic two-dimensional cubature , 1994, TOMS.

[6]  Philip J. Davis,et al.  Chapter 6 – Automatic Integration , 1984 .

[7]  L. M. Delves,et al.  On the implementation of a modified Sag-Szekeres quadrature method , 1997 .

[8]  Terje O. Espelid,et al.  An adaptive algorithm for the approximate calculation of multiple integrals , 1991, TOMS.

[9]  Ian Robinson,et al.  d2lri: a nonadaptive algorithm for two-dimensional cubature , 1999 .

[10]  David H. Bailey,et al.  Algorithm 719: Multiprecision translation and execution of FORTRAN programs , 1993, TOMS.

[11]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[12]  Alan Genz,et al.  A Package for Testing Multiple Integration Subroutines , 1987 .

[13]  William Kahan,et al.  Pracniques: further remarks on reducing truncation errors , 1965, CACM.

[14]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[15]  A. H. Stroud,et al.  Methods of Numerical Integration—Second Edition (Philip J. Davis and Philip Rabinowitz) , 1986 .

[16]  Nicholas J. Higham,et al.  The Accuracy of Floating Point Summation , 1993, SIAM J. Sci. Comput..

[17]  David H. Bailey,et al.  Multiprecision Translation and Execution of Fortran Programs , 1993 .

[18]  Michael Hill,et al.  A Comparison of Strategies for the Automatic Computation of Two-Dimensional Integrals over Infinite Domains , 2004, Numerical Algorithms.

[19]  Avram Sidi,et al.  A New Variable Transformation for Numerical Integration , 1993 .

[20]  Christoph W. Ueberhuber Numerical computation : methods, software, and analysis , 1997 .