Lessons in Strain and Stability: An Enantioselective Synthesis of (+)-[5]-Ladderanoic Acid.

The synthesis of structurally complex and highly strained natural products provides unique challenges and unexpected opportunities for the development of new reactions and strategies. Herein, the synthesis of (+)-[5]-ladderanoic acid is reported. En route to the target, unusual and unexpected strain-release driven transformations were uncovered. This required a drastic revision of the synthetic design that ultimately led to the development of a novel stepwise cyclobutane assembly by allylboration/Zweifel olefination.

[1]  A. Ogura,et al.  Total Syntheses of (+)-Aquatolide and Related Humulanolides. , 2019, Angewandte Chemie.

[2]  A. Ogura,et al.  Total Syntheses of (+)‐Aquatolide and Related Humulanolides , 2019, Angewandte Chemie.

[3]  J. Wiest,et al.  Thioallenoates in Catalytic Enantioselective [2+2]-Cycloadditions with Unactivated Alkenes. , 2019, Tetrahedron.

[4]  Kevin B. Smith,et al.  Catalyst-Controlled 1,2- and 1,1-Arylboration of α-Alkyl Alkenyl Arenes. , 2019, Angewandte Chemie.

[5]  J. Wiest,et al.  Allenoates in Enantioselective [2+2] Cycloadditions: From a Mechanistic Curiosity to a Stereospecific Transformation. , 2018, Journal of the American Chemical Society.

[6]  S. Boxer,et al.  Ladderane phospholipids form a densely packed membrane with normal hydrazine and anomalously low proton/hydroxide permeability , 2018, Proceedings of the National Academy of Sciences.

[7]  Samantha A. Green,et al.  Iron-Nickel Dual-Catalysis: A New Engine for Olefin Functionalization and the Formation of Quaternary Centers. , 2018, Journal of the American Chemical Society.

[8]  J. Wiest,et al.  Synthesis of (-)-Hebelophyllene E: An Entry to Geminal Dimethyl-Cyclobutanes by [2+2] Cycloaddition of Alkenes and Allenoates. , 2018, Angewandte Chemie.

[9]  Namhyeon Kim,et al.  Copper-Catalyzed Asymmetric Borylallylation of Vinyl Arenes. , 2017, Organic letters.

[10]  M. K. Brown,et al.  Synthesis of ent-[3]-Ladderanol: Development and Application of Intramolecular Chirality Transfer [2+2] Cycloadditions of Allenic Ketones and Alkenes. , 2017, Journal of the American Chemical Society.

[11]  M. K. Brown,et al.  Catalyst Controlled Regiodivergent Arylboration of Dienes. , 2017, Journal of the American Chemical Society.

[12]  V. Aggarwal,et al.  50 Years of Zweifel Olefination: A Transition-Metal-Free Coupling , 2017, Synthesis.

[13]  D. Tantillo,et al.  Intramolecular Chirality Transfer [2 + 2] Cycloadditions of Allenoates and Alkenes. , 2017, Organic letters.

[14]  Kevin B. Smith,et al.  Regioselective Arylboration of Isoprene and Its Derivatives by Pd/Cu Cooperative Catalysis. , 2017, Journal of the American Chemical Society.

[15]  V. Aggarwal,et al.  Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. , 2017, Chemical communications.

[16]  Kaitlyn M. Logan,et al.  Catalytic Enantioselective Arylboration of Alkenylarenes. , 2017, Angewandte Chemie.

[17]  S. Boxer,et al.  Chemical Synthesis and Self-Assembly of a Ladderane Phospholipid. , 2016, Journal of the American Chemical Society.

[18]  A. Parra,et al.  Enantioselective Synthesis of Cyclobutylboronates via a Copper-Catalyzed Desymmetrization Approach. , 2016, Angewandte Chemie.

[19]  Martin D. Eastgate,et al.  A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents , 2016, Science.

[20]  Kevin B. Smith,et al.  Copper/palladium synergistic catalysis for the syn- and anti-selective carboboration of alkenes. , 2015, Angewandte Chemie.

[21]  M. K. Brown,et al.  Catalytic enantioselective allenoate-alkene [2 + 2] cycloadditions. , 2015, Journal of the American Chemical Society.

[22]  Kevin B. Smith,et al.  Alkene carboboration enabled by synergistic catalysis. , 2014, Chemistry.

[23]  V. Aggarwal,et al.  Stereocontrolled synthesis of adjacent acyclic quaternary-tertiary motifs: application to a concise total synthesis of (-)-filiformin. , 2014, Angewandte Chemie.

[24]  J. Rita,et al.  The correct structure of aquatolide-experimental validation of a theoretically-predicted structural revision. , 2012, Journal of the American Chemical Society.

[25]  Dustin H. Nouri and Dean J. Tantillo They Came From the Deep: Syntheses, Applications, and Biology of Ladderanes , 2006 .

[26]  E. Corey,et al.  Enantioselective synthesis of pentacycloanammoxic acid. , 2006, Journal of the American Chemical Society.

[27]  Marc Strous,et al.  Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox) , 2005, The FEBS journal.

[28]  E. Corey,et al.  Total synthesis of (+/-)-pentacycloanammoxic acid. , 2004, Journal of the American Chemical Society.

[29]  H. Hopf Sprosse auf Sprosse – von nichtnatürlichen zu bioorganischen molekularen Leitern , 2003 .

[30]  Henning Hopf,et al.  Step by step--from nonnatural to biological molecular ladders. , 2003, Angewandte Chemie.

[31]  Adri C. T. van Duin,et al.  Linearly concatenated cyclobutane lipids form a dense bacterial membrane , 2002, Nature.

[32]  P. Wender,et al.  Methods for the preparations of 1,5-dienes. A metathetical route to medium-sized carbocycles , 1977 .

[33]  R. N. Mcdonald,et al.  Strained-ring systems. V. The synthesis of bi-cyclo[2.2.0]hexan-2-one and endo-bicyclo[2.2.0]hexan-2-ol , 1967 .

[34]  J. del Pozo,et al.  Mechanism-based enhancement of scope and enantioselectivity for reactions involving a copper-substituted stereogenic carbon centre. , 2018, Nature chemistry.

[35]  M. Crimmins,et al.  A facile synthesis of δ-valerolactones by photoannelation , 1978 .