Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure

Nanoscale devices, such as all-optical modulators and electro-optical transducers, can be implemented in heterostructures that integrate plasmonic nanostructures with functional active materials. Here we demonstrate all-optical control of a nanoscale memory effect in such a heterostructure by coupling the localized surface plasmon resonance (LSPR) of gold nanodisk arrays to a phase-changing material (PCM), vanadium dioxide (VO2). By latching the VO2 in a distinct correlated metallic state during the insulator-to-metal transition (IMT), while concurrently exciting the hybrid nanostructure with one or more ultraviolet optical pulses, the entire phase space of this correlated state can be accessed optically to modulate the plasmon response. We find that the LSPR modulation depends strongly but linearly on the initial latched state, suggesting that the memory effect encoded in the plasmon resonance wavelength is linked to the strongly correlated electron states of the VO2. The continuous, linear variation of ...

[1]  H. Lezec,et al.  Electrooptic modulation in thin film barium titanate plasmonic interferometers. , 2008, Nano letters.

[2]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[3]  Qihuang Gong,et al.  Ultralow-power and ultrafast all-optical tunable plasmon-induced transparency in metamaterials at optical communication range , 2013, Scientific Reports.

[4]  Fanghui Ren,et al.  Thermo-optic modulation of plasmonic bandgap on metallic photonic crystal slab , 2013 .

[5]  G. Wiederrecht,et al.  Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality. , 2011, Nature nanotechnology.

[6]  H. T. Kim,et al.  Electrostatic modification of infrared response in gated structures based on VO2 , 2008, 0806.4826.

[7]  Masashi Kawasaki,et al.  Tuning of the metal-insulator transition in electrolyte-gated NdNiO3 thin films , 2010 .

[8]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[9]  H. Atwater,et al.  Frequency tunable near-infrared metamaterials based on VO2 phase transition. , 2009, Optics express.

[10]  Richard F. Haglund,et al.  Modulated optical transmission of subwavelength hole arrays in metal-VO2 films , 2006 .

[11]  Kannatassen Appavoo,et al.  Role of defects in the phase transition of VO2 nanoparticles probed by plasmon resonance spectroscopy. , 2012, Nano letters.

[12]  Joyeeta Nag,et al.  Plasmonic probe of the semiconductor to metal phase transition in vanadium dioxide. , 2013, Nano letters.

[13]  N. Rotenberg,et al.  Ultrafast Active Plasmonics on Gold Films , 2011 .

[14]  Angel Rubio,et al.  Instantaneous band gap collapse in photoexcited monoclinic VO2 due to photocarrier doping. , 2014, Physical review letters.

[15]  Kannatassen Appavoo,et al.  Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial. , 2011, Nano letters.

[16]  C. N. Berglund,et al.  Optical Properties of VO2between 0.25 and 5 eV , 1968 .

[17]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[18]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[19]  Byung-Gyu Chae,et al.  Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging , 2007, Science.

[20]  Félix E. Fernández,et al.  Optoelectronic and all-optical multiple memory states in vanadium dioxide , 2010 .

[21]  P. Van Dorpe,et al.  Plasmonic behaviors of gold dimers perturbed by a single nanoparticle in the gap. , 2012, Nanoscale.

[22]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[23]  Joyeeta Nag,et al.  Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. , 2014, Nano letters.

[24]  Amir Yacoby,et al.  Studies on electric triggering of the metal-insulator transition in VO 2 thin films between 77 K and 300 K , 2011 .

[25]  Harald Giessen,et al.  All-optical control of the ultrafast dynamics of a hybrid plasmonic system. , 2010, Physical review letters.

[26]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[27]  S. Bonetti,et al.  Designer Magnetoplasmonics with Nickel Nanoferromagnets , 2011, Nano letters.

[28]  S. Maier,et al.  Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. , 2010, Optics letters.

[29]  David Hillerkuss,et al.  The plasmonic memristor: a latching optical switch , 2014 .

[30]  Miyano,et al.  Visualization of the local insulator-metal transition in Pr0.7Ca0. 3MnO3 , 1998, Science.

[31]  S. Luryi,et al.  Nonhysteretic behavior inside the hysteresis loop of VO2 and its possible application in infrared imaging , 2009 .

[32]  Masashi Kawasaki,et al.  Metal-insulator transition in epitaxial V1−xWxO2(0≤x≤0.33) thin films , 2010 .

[33]  Javier Aizpurua,et al.  All-optical control of a single plasmonic nanoantenna-ITO hybrid. , 2011, Nano letters.

[34]  L. Feldman,et al.  Size-dependent optical properties of VO2 nanoparticle arrays. , 2004, Physical review letters.

[35]  R. F. Haglund,et al.  Ultrafast insulator-metal phase transition in VO 2 studied by multiterahertz spectroscopy , 2011, 1104.2984.

[36]  Wei Chen,et al.  New aspects of the metal-insulator transition in single-domain vanadium dioxide nanobeams. , 2009, Nature nanotechnology.

[37]  Kannatassen Appavoo,et al.  Polarization selective phase-change nanomodulator , 2014, Scientific Reports.

[38]  Massimiliano Di Ventra,et al.  Phase-transition driven memristive system , 2009, 0901.0899.

[39]  Thomas A. Klar,et al.  Electrically controlled light scattering with single metal nanoparticles , 2002 .

[40]  Mohsen Rahmani,et al.  University of Birmingham Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna , 2016 .

[41]  Hongkun Park,et al.  Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams. , 2006, Nano letters.

[42]  Mohamed Chaker,et al.  A photoinduced metal-like phase of monoclinic VO2 revealed by ultrafast electron diffraction , 2014, Science.

[43]  Achanta Venu Gopal,et al.  Enhanced magneto-optical effects in magnetoplasmonic crystals. , 2011, Nature nanotechnology.

[44]  J. C. Kieffer,et al.  Evidence for a structurally-driven insulator-to-metal transition in VO 2 : A view from the ultrafast timescale , 2004, cond-mat/0403214.

[45]  F. J. Morin,et al.  Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature , 1959 .

[46]  H. Bernien,et al.  Active terahertz nanoantennas based on VO2 phase transition. , 2010, Nano letters.

[47]  Richard F. Haglund,et al.  Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films , 2004 .

[48]  Tobias Steinle,et al.  Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation , 2013, Nature Communications.

[49]  Alfred Leitenstorfer,et al.  Active magneto-plasmonics in hybrid metal–ferromagnet structures , 2010 .

[50]  Liesbet Lagae,et al.  Electrical detection of confined gap plasmons in metal-insulator-metal waveguides , 2009 .

[51]  A P Ramirez REVIEW ARTICLE: Colossal magnetoresistance , 1997 .

[52]  Zhaowei Liu,et al.  Focusing surface plasmons with a plasmonic lens. , 2005, Nano letters.

[53]  A. Zakharov,et al.  Direct observation of decoupled structural and electronic transitions and an ambient pressure monocliniclike metallic phase of VO2. , 2014, Physical review letters.

[54]  S. Maier,et al.  Spectroscopic ellipsometry as an optical probe of strain evolution in ferroelectric thin films. , 2012, Optics express.

[55]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.