Partial Linear Gaussian Models for Tracking in Image Sequences Using Sequential Monte Carlo Methods

The recent development of Sequential Monte Carlo methods (also called particle filters) has enabled the definition of efficient algorithms for tracking applications in image sequences. The efficiency of these approaches depends on the quality of the state-space exploration, which may be inefficient due to a crude choice of the function used to sample in the associated probability space. A careful study of this issue led us to consider the modeling of the tracked dynamic system with partial linear Gaussian models. Such models are characterized by a non linear dynamic equation, a linear measurement equation and additive Gaussian noises. They allow inferring an analytic expression of the optimal importance function used in the diffusion process of the particle filter, and enable building a relevant approximation of a validation gate. Despite of these potential advantages partial linear Gaussian models have not been investigated. The aim of this paper is therefore to demonstrate that such models can be of real interest facing difficult usual issues such as occlusions, ambiguities due to cluttered backgrounds and large state space. Three instances of these models are proposed. After a theoretical analysis, their significance is demonstrated by their performance for tracking points and planar objects in challenging real-world image sequences.

[1]  Jeff A. Bilmes,et al.  A gentle tutorial of the em algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models , 1998 .

[2]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  N. Gordon A hybrid bootstrap filter for target tracking in clutter , 1995, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Michael K. Pitt,et al.  Auxiliary Variable Based Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[5]  Yong Rui,et al.  Better proposal distributions: object tracking using unscented particle filter , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Andrew Zisserman,et al.  Object Level Grouping for Video Shots , 2004, ECCV.

[7]  Étienne Mémin,et al.  Optimal Importance Sampling for Tracking in Image Sequences: Application to Point Tracking , 2004, ECCV.

[8]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[9]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[10]  Dieter Fox,et al.  Real-time particle filters , 2004, Proceedings of the IEEE.

[11]  Andrew Blake,et al.  Learning dynamical models using expectation-maximisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[12]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[13]  Patrick Pérez,et al.  Towards Improved Observation Models for Visual Tracking: Selective Adaptation , 2002, ECCV.

[14]  Yaakov Bar-Shalom,et al.  Expected likelihood for tracking in clutter with particle filters , 2002, SPIE Defense + Commercial Sensing.

[15]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[16]  Simon J. Godsill,et al.  Improvement Strategies for Monte Carlo Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[17]  Michael J. Black,et al.  Implicit Probabilistic Models of Human Motion for Synthesis and Tracking , 2002, ECCV.

[18]  Randy E. Ellis,et al.  Surface-Based Registration with a Particle Filter , 2004, MICCAI.

[19]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[20]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[21]  S. Godsill,et al.  Monte Carlo filtering for multi target tracking and data association , 2005, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[23]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Michael Isard,et al.  A mixed-state condensation tracker with automatic model-switching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[25]  Patrick Pérez,et al.  Data fusion for visual tracking with particles , 2004, Proceedings of the IEEE.

[26]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[27]  Ying Wu,et al.  Robust Visual Tracking by Integrating Multiple Cues Based on Co-Inference Learning , 2004, International Journal of Computer Vision.

[28]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[29]  Andrew Blake,et al.  Classification of human body motion , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[30]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[31]  Matthew Brand,et al.  Morphable 3D models from video , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[32]  BlakeAndrew,et al.  C ONDENSATION Conditional Density Propagation forVisual Tracking , 1998 .

[33]  Olivier Faugeras,et al.  Motion and Structure from Motion in a piecewise Planar Environment , 1988, Int. J. Pattern Recognit. Artif. Intell..

[34]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[35]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[36]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[37]  F. Jay Breidt,et al.  Highest density gates for target tracking , 2000, IEEE Trans. Aerosp. Electron. Syst..

[38]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[39]  Michael Isard,et al.  Learning Multi-Class Dynamics , 1998, NIPS.

[40]  M. Worring,et al.  Occlusion robust adaptive template tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[41]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[42]  David J. Fleet,et al.  Probabilistic detection and tracking of motion discontinuities , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[43]  David Suter,et al.  Assessing the performance of corner detectors for point feature tracking applications , 2004, Image Vis. Comput..

[44]  Christian Musso,et al.  Improving Regularised Particle Filters , 2001, Sequential Monte Carlo Methods in Practice.

[45]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Étienne Mémin,et al.  Conditional filters for image sequence-based tracking - application to point tracking , 2005, IEEE Transactions on Image Processing.

[47]  Anne Cuzol,et al.  A stochastic filter for fluid motion tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[48]  Simon J. Godsill,et al.  Particle methods for Bayesian modeling and enhancement of speech signals , 2002, IEEE Trans. Speech Audio Process..

[49]  Frank Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[50]  Lorenzo Torresani,et al.  Space-Time Tracking , 2002, ECCV.

[51]  D. Hinkley Inference about the change-point from cumulative sum tests , 1971 .

[52]  Cristian Sminchisescu,et al.  Hyperdynamics Importance Sampling , 2002, ECCV.

[53]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[54]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[55]  Andrew Zisserman,et al.  Object Level Grouping for Video Shots , 2004, International Journal of Computer Vision.

[56]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[57]  Y.-T. Huang,et al.  Optimised integrated CMOS optical receiver for optical interconnects , 1993 .

[58]  Randy E. Ellis,et al.  Unified Point Selection and Surface-Based Registration Using a Particle Filter , 2005, MICCAI.

[59]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[60]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..