Recycling Krylov subspace methods for sequences of linear systems
暂无分享,去创建一个
[1] R. Bhatia. Perturbation Bounds for Matrix Eigenvalues , 2007 .
[2] M. Benzi. Preconditioning techniques for large linear systems: a survey , 2002 .
[3] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[4] Jin Xie,et al. A Sharp Version of Kahan''s Theorem on Clustered Eigenvalues , 1994 .
[5] Cornelis Vuik,et al. Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..
[6] E. Sturler,et al. Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .
[7] Sergey V. Kuznetsov. Perturbation bounds of the krylov bases and associated hessenberg forms , 1997 .
[8] O. Axelsson. A class of iterative methods for finite element equations , 1976 .
[9] B. Parlett,et al. The Lanczos algorithm with selective orthogonalization , 1979 .
[10] L. Trefethen,et al. Spectra and Pseudospectra , 2020 .
[11] D. Bertaccini. EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .
[12] M. Rozložník,et al. Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .
[13] Anne Greenbaum,et al. Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.
[14] Wim Vanroose,et al. Numerical Bifurcation Study of Superconducting Patterns on a Square , 2011, SIAM J. Appl. Dyn. Syst..
[15] Nico Schlomer,et al. Preconditioned Recycling Krylov subspace methods for self-adjoint problems , 2012 .
[16] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[17] Daniel B. Szyld,et al. The many proofs of an identity on the norm of oblique projections , 2006, Numerical Algorithms.
[18] Miroslav Tuma,et al. Improving Triangular Preconditioner Updates for Nonsymmetric Linear Systems , 2009, LSSC.
[19] INVERTING THE DIFFERENCE OF HILBERT SPACE PROJECTIONS , 1997 .
[20] Cornelis Vuik,et al. A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..
[21] S. Eisenstat,et al. Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .
[22] Reinhard Nabben,et al. Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..
[23] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[24] Peter N. Brown,et al. A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..
[25] Jocelyne Erhel,et al. Parallelism and robustness in GMRES with the Newton basis and the deflated restarting , 2011 .
[26] G. Meurant. The Lanczos and conjugate gradient algorithms , 2008 .
[27] K. Burrage,et al. Restarted GMRES preconditioned by deflation , 1996 .
[28] Lloyd N. Trefethen,et al. GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..
[29] Andrew Knyazev,et al. Angles between infinite dimensional subspaces with applications to the Rayleigh-Ritz and alternating projectors methods ✩ , 2007, 0705.1023.
[30] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[31] Valeria Simoncini,et al. Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..
[32] H. Wimmer,et al. Estimates for projections in Banach spaces and existence of direct complements , 2005 .
[33] Agnieszka Miedlar,et al. Inexact Adaptive Finite Element Methods for Elliptic PDE Eigenvalue Problems , 2011 .
[34] Roy Mathias,et al. Quadratic Residual Bounds for the Hermitian Eigenvalue Problem , 1998 .
[35] Gene H. Golub,et al. Matrix computations , 1983 .
[36] Gerard L. G. Sleijpen,et al. Differences in the Effects of Rounding Errors in Krylov Solvers for Symmetric Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[37] M. Drazin. Pseudo-Inverses in Associative Rings and Semigroups , 1958 .
[38] Gérard Meurant,et al. On the Incomplete Cholesky Decomposition of a Class of Perturbed Matrices , 2001, SIAM J. Sci. Comput..
[39] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[40] Tosio Kato. Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .
[41] Lloyd N. Trefethen,et al. How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..
[42] C. Kelley. Solving Nonlinear Equations with Newton's Method , 1987 .
[43] Anders Logg,et al. DOLFIN: a C++/Python Finite Element Library , 2012 .
[44] R. Morgan,et al. Deflated GMRES for systems with multiple shifts and multiple right-hand sides☆ , 2007, 0707.0502.
[45] H. Walker,et al. GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..
[46] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[47] Jia Zhongxiao,et al. The convergence of Krylov subspace methods for large unsymmetric linear systems , 1998 .
[48] Ilse C. F. Ipsen,et al. THE IDEA BEHIND KRYLOV METHODS , 1998 .
[49] Z. Cao,et al. A Sharp Version of Kahan ' s Theorem on Clustered Eigenvalues , 2022 .
[50] E. Haynsworth. Determination of the inertia of a partitioned Hermitian matrix , 1968 .
[51] M. Rozložník,et al. The loss of orthogonality in the Gram-Schmidt orthogonalization process , 2005 .
[52] Z. Dostál. Conjugate gradient method with preconditioning by projector , 1988 .
[53] Robert C. Kirby,et al. From Functional Analysis to Iterative Methods , 2010, SIAM Rev..
[54] H. Elman. Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .
[55] Anne Greenbaum,et al. Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..
[56] G. Stewart. Two simple residual bounds for the eigenvalues of a Hermintian matrix , 1991 .
[57] Earl Berkson. Some metrics on the subspaces of a Banach space. , 1963 .
[58] Henk A. van der Vorst,et al. Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..
[59] L. Trefethen. Approximation theory and numerical linear algebra , 1990 .
[60] Reinhard Nabben,et al. Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..
[61] Ronald B. Morgan,et al. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..
[62] R. Freund. Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .
[63] Lloyd N. Trefethen,et al. Computation of pseudospectra , 1999, Acta Numerica.
[64] Yimin Wei,et al. Towards backward perturbation bounds for approximate dual Krylov subspaces , 2013 .
[65] H. Walker. Implementation of the GMRES method using householder transformations , 1988 .
[66] J. Daniel. The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .
[67] Merico E. Argentati,et al. Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates , 2001, SIAM J. Sci. Comput..
[68] Qiang Du,et al. Modeling and Analysis of a Periodic Ginzburg-Landau Model for Type-II Superconductors , 1993, SIAM J. Appl. Math..
[69] Jörg Liesen,et al. A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..
[70] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[71] H. Keller. The Bordering Algorithm and Path Following Near Singular Points of Higher Nullity , 1983 .
[72] W. Kahan,et al. NORM-PRESERVING DILATIONS AND THEIR APPLICATIONS TO OPTIMAL ERROR BOUNDS* , 1982 .
[73] L. Trefethen,et al. Pseudospectra of rectangular matrices , 2002, Spectra and Pseudospectra.
[74] V. Burenkov,et al. Spectral stability estimates for the eigenfunctions of second order elliptic operators , 2012 .
[75] Tosio Kato. Perturbation theory for linear operators , 1966 .
[76] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[77] Miroslav Tuma,et al. Preconditioner updates for solving sequences of linear systems in matrix‐free environment , 2010, Numer. Linear Algebra Appl..
[78] Jorg Liesen,et al. The field of values bound on ideal GMRES , 2012, 1211.5969.
[79] Eric de Sturler,et al. Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..
[80] Peter Deuflhard,et al. Newton Methods for Nonlinear Problems , 2004 .
[81] Axel Klawonn,et al. Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.
[82] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[83] Cornelis Vuik,et al. On the Convergence of GMRES with Invariant-Subspace Deflation , 2010 .
[84] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[85] Kim-Chuan Toh,et al. Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..
[86] S. A. Kharchenko,et al. Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..
[87] Miroslav Tuma,et al. Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems , 2007, SIAM J. Sci. Comput..
[88] K. St. A review of algebraic multigrid , 2001 .
[89] E. Sturler,et al. Nested Krylov methods based on GCR , 1996 .
[90] Michael Eiermann,et al. Fields of values and iterative methods , 1993 .
[91] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[92] Cornelis Vuik,et al. On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..
[93] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[94] G. Stewart. Backward error bounds for approximate Krylov subspaces , 2002 .
[95] Zdenek Strakos,et al. Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.
[96] M. Eiermann,et al. Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.
[97] A. Galántai. Projectors and Projection Methods , 2003 .
[98] M. Rozložník,et al. Numerical stability of GMRES , 1995 .
[99] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[100] R. Nicolaides. Deflation of conjugate gradients with applications to boundary value problems , 1987 .
[101] D. Keyes,et al. Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .
[102] A. Griewank. On Solving Nonlinear Equations with Simple Singularities or Nearly Singular Solutions , 1985 .
[103] M. Arioli,et al. Stopping criteria for iterative methods:¶applications to PDE's , 2001 .
[104] Youcef Saad,et al. Projection methods for solving large sparse eigenvalue problems , 1983 .
[105] B. Fischer. Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .
[106] A. Jennings. Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .
[107] Don Buckholtz. Hilbert space idempotents and involutions , 1999 .
[108] Daniele Bertaccini,et al. Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .
[109] André Gaul,et al. KryPy v2.1.1: Krylov subspace methods package for Python , 2014 .
[110] G. W. Stewart,et al. Matrix algorithms , 1998 .
[111] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[112] Ronald B. Morgan,et al. Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..
[113] Studi di Padova. Spectral stability estimates for the eigenfunctions of second order elliptic operators , 2009 .
[114] Maxim A. Olshanskii,et al. Field-of-Values Convergence Analysis of Augmented Lagrangian Preconditioners for the Linearized Navier-Stokes Problem , 2011, SIAM J. Numer. Anal..
[115] Wim Vanroose,et al. An optimal linear solver for the Jacobian system of the extreme type-II Ginzburg-Landau problem , 2012, J. Comput. Phys..
[116] Frédéric Guyomarc'h,et al. An Augmented Subspace Conjugate Gradient , 1997 .
[117] M. Arioli,et al. Krylov sequences of maximal length and convergence of GMRES , 1997 .
[118] Valeria Simoncini,et al. Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..
[119] S. Godunov,et al. Condition number of the Krylov bases and subspaces , 1996 .
[120] Miroslav Rozlozník,et al. Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..
[121] G. Reddien. On Newton’s Method for Singular Problems , 1978 .
[122] L. Giraud,et al. When modified Gram–Schmidt generates a well‐conditioned set of vectors , 2002 .
[123] J. Ruge,et al. Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG) , 1984 .
[124] Yehuda B. Band,et al. Optical Solitary Waves in the Higher Order Nonlinear Schrödinger Equation , 1996, patt-sol/9612004.
[125] Ronald B. Morgan,et al. GMRES Convergence for Perturbed Coefficient Matrices, with Application to Approximate Deflation Preconditioning , 2013, SIAM J. Matrix Anal. Appl..
[126] Christophe Geuzaine,et al. Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .
[127] Y. Saad. Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..
[128] Cornelis Vuik,et al. A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..
[129] Zdenek Strakos,et al. GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..
[130] Misha Elena Kilmer,et al. Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..
[131] Ronald B. Morgan,et al. A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..
[132] Anders Logg,et al. DOLFIN: Automated finite element computing , 2010, TOMS.
[133] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[134] Maxim A. Olshanskii,et al. Acquired Clustering Properties and Solution of Certain Saddle Point Systems , 2010, SIAM J. Matrix Anal. Appl..
[135] L. Yu. Kolotilina,et al. Twofold deflation preconditioning of linear algebraic systems. I. Theory , 1998 .
[136] Paul Fischer,et al. PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .
[137] R. Morgan. Computing Interior Eigenvalues of Large Matrices , 1991 .
[138] E. Sturler,et al. Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .
[139] Ronald B. Morgan,et al. GMRES WITH DEFLATED , 2008 .
[140] Oliver G. Ernst,et al. Analysis of acceleration strategies for restarted minimal residual methods , 2000 .
[141] H. Keller,et al. CONVERGENCE RATES FOR NEWTON'S METHOD AT SINGULAR POINTS* , 1983 .
[142] Yousef Saad,et al. Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..
[143] D. Szyld,et al. On the Superlinear Convergence of MINRES , 2013 .
[144] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[145] B. Dasgupta,et al. Coupled nonlinear Schrödinger equation for Langmuir and dispersive ion acoustic waves , 1979 .
[146] Volker Mehrmann,et al. Nonlinear eigenvalue and frequency response problems in industrial practice , 2011 .
[147] C. Kelley,et al. Newton’s Method at Singular Points. I , 1980 .
[148] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[149] Lloyd N. Trefethen,et al. Large-Scale Computation of Pseudospectra Using ARPACK and Eigs , 2001, SIAM J. Sci. Comput..
[150] Fei Xue,et al. Krylov Subspace Recycling for Sequences of Shifted Linear Systems , 2013, ArXiv.
[151] Lois Mansfield. On the conjugate gradient solution of the Schur complement system obtained from domain decomposition , 1990 .
[152] M. SIAMJ.,et al. RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .
[153] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[154] Frédéric Guyomarc'h,et al. A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..
[155] H. Simon. Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .
[156] Zdenek Strakos,et al. Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.
[157] B. Parlett. Do We Fully Understand the Symmetric Lanczos Algorithm Yet , 1995 .
[158] G. Starke. Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .
[159] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[160] Karsten Kahl,et al. Analysis of the Deflated Conjugate Gradient Method Based on Symmetric Multigrid Theory , 2012 .
[161] G. W. Stewart,et al. On the Numerical Analysis of Oblique Projectors , 2011, SIAM J. Matrix Anal. Appl..
[162] Caroline Nore,et al. Numerical study of hydrodynamics using the nonlinear Schro¨dinger equation , 1993 .
[163] Y. Saad. Krylov subspace methods for solving large unsymmetric linear systems , 1981 .
[164] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[165] M. Arioli,et al. Roundoff error analysis of algorithms based on Krylov subspace methods , 1996 .
[166] Cornelis Vuik,et al. A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners , 2008, Numer. Linear Algebra Appl..
[167] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[168] Lois Mansfield. Damped Jacobi Preconditioning and Coarse Grid Deflation for Conjugate Gradient Iteration on Parallel Computers , 1991, SIAM J. Sci. Comput..
[169] Abram Jujunashvili. ANGLES BETWEEN INFINITE-DIMENSIONAL SUBSPACES , 2005 .
[170] Cornelis Vuik,et al. A Comparison of Deflation and the Balancing Preconditioner , 2005, SIAM J. Sci. Comput..
[171] O. Nevanlinna. Convergence of Iterations for Linear Equations , 1993 .
[172] Brian E. Granger,et al. IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.
[173] Andrew J. Wathen,et al. Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.
[174] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[175] Philipp Birken,et al. Preconditioner updates applied to CFD model problems , 2008 .
[176] Frédéric Guyomarc'h,et al. An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..