Recycling Krylov subspace methods for sequences of linear systems

Der LaTeX-Code sowie der Source-Code aller Experimente ist unter https://github.com/andrenarchy/phdthesis verfugbar.

[1]  R. Bhatia Perturbation Bounds for Matrix Eigenvalues , 2007 .

[2]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[3]  Christopher C. Paige,et al.  The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .

[4]  Jin Xie,et al.  A Sharp Version of Kahan''s Theorem on Clustered Eigenvalues , 1994 .

[5]  Cornelis Vuik,et al.  Comparison of Two-Level Preconditioners Derived from Deflation, Domain Decomposition and Multigrid Methods , 2009, J. Sci. Comput..

[6]  E. Sturler,et al.  Large‐scale topology optimization using preconditioned Krylov subspace methods with recycling , 2007 .

[7]  Sergey V. Kuznetsov Perturbation bounds of the krylov bases and associated hessenberg forms , 1997 .

[8]  O. Axelsson A class of iterative methods for finite element equations , 1976 .

[9]  B. Parlett,et al.  The Lanczos algorithm with selective orthogonalization , 1979 .

[10]  L. Trefethen,et al.  Spectra and Pseudospectra , 2020 .

[11]  D. Bertaccini EFFICIENT PRECONDITIONING FOR SEQUENCES OF PARAMETRIC COMPLEX SYMMETRIC LINEAR SYSTEMS , 2004 .

[12]  M. Rozložník,et al.  Numerical behaviour of the modified gram-schmidt GMRES implementation , 1997 .

[13]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[14]  Wim Vanroose,et al.  Numerical Bifurcation Study of Superconducting Patterns on a Square , 2011, SIAM J. Appl. Dyn. Syst..

[15]  Nico Schlomer,et al.  Preconditioned Recycling Krylov subspace methods for self-adjoint problems , 2012 .

[16]  V. N. Bogaevski,et al.  Matrix Perturbation Theory , 1991 .

[17]  Daniel B. Szyld,et al.  The many proofs of an identity on the norm of oblique projections , 2006, Numerical Algorithms.

[18]  Miroslav Tuma,et al.  Improving Triangular Preconditioner Updates for Nonsymmetric Linear Systems , 2009, LSSC.

[19]  INVERTING THE DIFFERENCE OF HILBERT SPACE PROJECTIONS , 1997 .

[20]  Cornelis Vuik,et al.  A Comparison of Deflation and Coarse Grid Correction Applied to Porous Media Flow , 2004, SIAM J. Numer. Anal..

[21]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[22]  Reinhard Nabben,et al.  Deflation and Balancing Preconditioners for Krylov Subspace Methods Applied to Nonsymmetric Matrices , 2008, SIAM J. Matrix Anal. Appl..

[23]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[24]  Peter N. Brown,et al.  A Theoretical Comparison of the Arnoldi and GMRES Algorithms , 1991, SIAM J. Sci. Comput..

[25]  Jocelyne Erhel,et al.  Parallelism and robustness in GMRES with the Newton basis and the deflated restarting , 2011 .

[26]  G. Meurant The Lanczos and conjugate gradient algorithms , 2008 .

[27]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[28]  Lloyd N. Trefethen,et al.  GMRES/CR and Arnoldi/Lanczos as Matrix Approximation Problems , 2018, SIAM J. Sci. Comput..

[29]  Andrew Knyazev,et al.  Angles between infinite dimensional subspaces with applications to the Rayleigh-Ritz and alternating projectors methods ✩ , 2007, 0705.1023.

[30]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[31]  Valeria Simoncini,et al.  Recent computational developments in Krylov subspace methods for linear systems , 2007, Numer. Linear Algebra Appl..

[32]  H. Wimmer,et al.  Estimates for projections in Banach spaces and existence of direct complements , 2005 .

[33]  Agnieszka Miedlar,et al.  Inexact Adaptive Finite Element Methods for Elliptic PDE Eigenvalue Problems , 2011 .

[34]  Roy Mathias,et al.  Quadratic Residual Bounds for the Hermitian Eigenvalue Problem , 1998 .

[35]  Gene H. Golub,et al.  Matrix computations , 1983 .

[36]  Gerard L. G. Sleijpen,et al.  Differences in the Effects of Rounding Errors in Krylov Solvers for Symmetric Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..

[37]  M. Drazin Pseudo-Inverses in Associative Rings and Semigroups , 1958 .

[38]  Gérard Meurant,et al.  On the Incomplete Cholesky Decomposition of a Class of Perturbed Matrices , 2001, SIAM J. Sci. Comput..

[39]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[40]  Tosio Kato Estimation of Iterated Matrices, with application to the von Neumann condition , 1960 .

[41]  Lloyd N. Trefethen,et al.  How Fast are Nonsymmetric Matrix Iterations? , 1992, SIAM J. Matrix Anal. Appl..

[42]  C. Kelley Solving Nonlinear Equations with Newton's Method , 1987 .

[43]  Anders Logg,et al.  DOLFIN: a C++/Python Finite Element Library , 2012 .

[44]  R. Morgan,et al.  Deflated GMRES for systems with multiple shifts and multiple right-hand sides☆ , 2007, 0707.0502.

[45]  H. Walker,et al.  GMRES On (Nearly) Singular Systems , 1997, SIAM J. Matrix Anal. Appl..

[46]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[47]  Jia Zhongxiao,et al.  The convergence of Krylov subspace methods for large unsymmetric linear systems , 1998 .

[48]  Ilse C. F. Ipsen,et al.  THE IDEA BEHIND KRYLOV METHODS , 1998 .

[49]  Z. Cao,et al.  A Sharp Version of Kahan ' s Theorem on Clustered Eigenvalues , 2022 .

[50]  E. Haynsworth Determination of the inertia of a partitioned Hermitian matrix , 1968 .

[51]  M. Rozložník,et al.  The loss of orthogonality in the Gram-Schmidt orthogonalization process , 2005 .

[52]  Z. Dostál Conjugate gradient method with preconditioning by projector , 1988 .

[53]  Robert C. Kirby,et al.  From Functional Analysis to Iterative Methods , 2010, SIAM Rev..

[54]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[55]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[56]  G. Stewart Two simple residual bounds for the eigenvalues of a Hermintian matrix , 1991 .

[57]  Earl Berkson Some metrics on the subspaces of a Banach space. , 1963 .

[58]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[59]  L. Trefethen Approximation theory and numerical linear algebra , 1990 .

[60]  Reinhard Nabben,et al.  Multilevel Projection-Based Nested Krylov Iteration for Boundary Value Problems , 2008, SIAM J. Sci. Comput..

[61]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[62]  R. Freund Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .

[63]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[64]  Yimin Wei,et al.  Towards backward perturbation bounds for approximate dual Krylov subspaces , 2013 .

[65]  H. Walker Implementation of the GMRES method using householder transformations , 1988 .

[66]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[67]  Merico E. Argentati,et al.  Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates , 2001, SIAM J. Sci. Comput..

[68]  Qiang Du,et al.  Modeling and Analysis of a Periodic Ginzburg-Landau Model for Type-II Superconductors , 1993, SIAM J. Appl. Math..

[69]  Jörg Liesen,et al.  A Framework for Deflated and Augmented Krylov Subspace Methods , 2012, SIAM J. Matrix Anal. Appl..

[70]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[71]  H. Keller The Bordering Algorithm and Path Following Near Singular Points of Higher Nullity , 1983 .

[72]  W. Kahan,et al.  NORM-PRESERVING DILATIONS AND THEIR APPLICATIONS TO OPTIMAL ERROR BOUNDS* , 1982 .

[73]  L. Trefethen,et al.  Pseudospectra of rectangular matrices , 2002, Spectra and Pseudospectra.

[74]  V. Burenkov,et al.  Spectral stability estimates for the eigenfunctions of second order elliptic operators , 2012 .

[75]  Tosio Kato Perturbation theory for linear operators , 1966 .

[76]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[77]  Miroslav Tuma,et al.  Preconditioner updates for solving sequences of linear systems in matrix‐free environment , 2010, Numer. Linear Algebra Appl..

[78]  Jorg Liesen,et al.  The field of values bound on ideal GMRES , 2012, 1211.5969.

[79]  Eric de Sturler,et al.  Recycling Krylov Subspaces for Sequences of Linear Systems , 2006, SIAM J. Sci. Comput..

[80]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[81]  Axel Klawonn,et al.  Block triangular preconditioners for nonsymmetric saddle point problems: field-of-values analysis , 1999, Numerische Mathematik.

[82]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[83]  Cornelis Vuik,et al.  On the Convergence of GMRES with Invariant-Subspace Deflation , 2010 .

[84]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[85]  Kim-Chuan Toh,et al.  Calculation of Pseudospectra by the Arnoldi Iteration , 1996, SIAM J. Sci. Comput..

[86]  S. A. Kharchenko,et al.  Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..

[87]  Miroslav Tuma,et al.  Efficient Preconditioning of Sequences of Nonsymmetric Linear Systems , 2007, SIAM J. Sci. Comput..

[88]  K. St A review of algebraic multigrid , 2001 .

[89]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[90]  Michael Eiermann,et al.  Fields of values and iterative methods , 1993 .

[91]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[92]  Cornelis Vuik,et al.  On the Construction of Deflation-Based Preconditioners , 2001, SIAM J. Sci. Comput..

[93]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[94]  G. Stewart Backward error bounds for approximate Krylov subspaces , 2002 .

[95]  Zdenek Strakos,et al.  Preconditioning and the Conjugate Gradient Method in the Context of Solving PDEs , 2014, SIAM spotlights.

[96]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[97]  A. Galántai Projectors and Projection Methods , 2003 .

[98]  M. Rozložník,et al.  Numerical stability of GMRES , 1995 .

[99]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[100]  R. Nicolaides Deflation of conjugate gradients with applications to boundary value problems , 1987 .

[101]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[102]  A. Griewank On Solving Nonlinear Equations with Simple Singularities or Nearly Singular Solutions , 1985 .

[103]  M. Arioli,et al.  Stopping criteria for iterative methods:¶applications to PDE's , 2001 .

[104]  Youcef Saad,et al.  Projection methods for solving large sparse eigenvalue problems , 1983 .

[105]  B. Fischer Polynomial Based Iteration Methods for Symmetric Linear Systems , 1996 .

[106]  A. Jennings Influence of the Eigenvalue Spectrum on the Convergence Rate of the Conjugate Gradient Method , 1977 .

[107]  Don Buckholtz Hilbert space idempotents and involutions , 1999 .

[108]  Daniele Bertaccini,et al.  Approximate Inverse Preconditioning for Shifted Linear Systems , 2003 .

[109]  André Gaul,et al.  KryPy v2.1.1: Krylov subspace methods package for Python , 2014 .

[110]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[111]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[112]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[113]  Studi di Padova Spectral stability estimates for the eigenfunctions of second order elliptic operators , 2009 .

[114]  Maxim A. Olshanskii,et al.  Field-of-Values Convergence Analysis of Augmented Lagrangian Preconditioners for the Linearized Navier-Stokes Problem , 2011, SIAM J. Numer. Anal..

[115]  Wim Vanroose,et al.  An optimal linear solver for the Jacobian system of the extreme type-II Ginzburg-Landau problem , 2012, J. Comput. Phys..

[116]  Frédéric Guyomarc'h,et al.  An Augmented Subspace Conjugate Gradient , 1997 .

[117]  M. Arioli,et al.  Krylov sequences of maximal length and convergence of GMRES , 1997 .

[118]  Valeria Simoncini,et al.  Theory of Inexact Krylov Subspace Methods and Applications to Scientific Computing , 2003, SIAM J. Sci. Comput..

[119]  S. Godunov,et al.  Condition number of the Krylov bases and subspaces , 1996 .

[120]  Miroslav Rozlozník,et al.  Modified Gram-Schmidt (MGS), Least Squares, and Backward Stability of MGS-GMRES , 2006, SIAM J. Matrix Anal. Appl..

[121]  G. Reddien On Newton’s Method for Singular Problems , 1978 .

[122]  L. Giraud,et al.  When modified Gram–Schmidt generates a well‐conditioned set of vectors , 2002 .

[123]  J. Ruge,et al.  Efficient solution of finite difference and finite element equations by algebraic multigrid (AMG) , 1984 .

[124]  Yehuda B. Band,et al.  Optical Solitary Waves in the Higher Order Nonlinear Schrödinger Equation , 1996, patt-sol/9612004.

[125]  Ronald B. Morgan,et al.  GMRES Convergence for Perturbed Coefficient Matrices, with Application to Approximate Deflation Preconditioning , 2013, SIAM J. Matrix Anal. Appl..

[126]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[127]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[128]  Cornelis Vuik,et al.  A Comparison of Two-Level Preconditioners Based on Multigrid and Deflation , 2010, SIAM J. Matrix Anal. Appl..

[129]  Zdenek Strakos,et al.  GMRES Convergence Analysis for a Convection-Diffusion Model Problem , 2005, SIAM J. Sci. Comput..

[130]  Misha Elena Kilmer,et al.  Recycling Subspace Information for Diffuse Optical Tomography , 2005, SIAM J. Sci. Comput..

[131]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[132]  Anders Logg,et al.  DOLFIN: Automated finite element computing , 2010, TOMS.

[133]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[134]  Maxim A. Olshanskii,et al.  Acquired Clustering Properties and Solution of Certain Saddle Point Systems , 2010, SIAM J. Matrix Anal. Appl..

[135]  L. Yu. Kolotilina,et al.  Twofold deflation preconditioning of linear algebraic systems. I. Theory , 1998 .

[136]  Paul Fischer,et al.  PROJECTION TECHNIQUES FOR ITERATIVE SOLUTION OF Ax = b WITH SUCCESSIVE RIGHT-HAND SIDES , 1993 .

[137]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[138]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[139]  Ronald B. Morgan,et al.  GMRES WITH DEFLATED , 2008 .

[140]  Oliver G. Ernst,et al.  Analysis of acceleration strategies for restarted minimal residual methods , 2000 .

[141]  H. Keller,et al.  CONVERGENCE RATES FOR NEWTON'S METHOD AT SINGULAR POINTS* , 1983 .

[142]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[143]  D. Szyld,et al.  On the Superlinear Convergence of MINRES , 2013 .

[144]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[145]  B. Dasgupta,et al.  Coupled nonlinear Schrödinger equation for Langmuir and dispersive ion acoustic waves , 1979 .

[146]  Volker Mehrmann,et al.  Nonlinear eigenvalue and frequency response problems in industrial practice , 2011 .

[147]  C. Kelley,et al.  Newton’s Method at Singular Points. I , 1980 .

[148]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[149]  Lloyd N. Trefethen,et al.  Large-Scale Computation of Pseudospectra Using ARPACK and Eigs , 2001, SIAM J. Sci. Comput..

[150]  Fei Xue,et al.  Krylov Subspace Recycling for Sequences of Shifted Linear Systems , 2013, ArXiv.

[151]  Lois Mansfield On the conjugate gradient solution of the Schur complement system obtained from domain decomposition , 1990 .

[152]  M. SIAMJ.,et al.  RESIDUAL-MINIMIZING KRYLOV SUBSPACE METHODS FOR STABILIZED DISCRETIZATIONS OF CONVECTION-DIFFUSION EQUATIONS∗ , 1998 .

[153]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[154]  Frédéric Guyomarc'h,et al.  A Deflated Version of the Conjugate Gradient Algorithm , 1999, SIAM J. Sci. Comput..

[155]  H. Simon Analysis of the symmetric Lanczos algorithm with reorthogonalization methods , 1984 .

[156]  Zdenek Strakos,et al.  Composite convergence bounds based on Chebyshev polynomials and finite precision conjugate gradient computations , 2014, Numerical Algorithms.

[157]  B. Parlett Do We Fully Understand the Symmetric Lanczos Algorithm Yet , 1995 .

[158]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[159]  G. Golub,et al.  Iterative solution of linear systems , 1991, Acta Numerica.

[160]  Karsten Kahl,et al.  Analysis of the Deflated Conjugate Gradient Method Based on Symmetric Multigrid Theory , 2012 .

[161]  G. W. Stewart,et al.  On the Numerical Analysis of Oblique Projectors , 2011, SIAM J. Matrix Anal. Appl..

[162]  Caroline Nore,et al.  Numerical study of hydrodynamics using the nonlinear Schro¨dinger equation , 1993 .

[163]  Y. Saad Krylov subspace methods for solving large unsymmetric linear systems , 1981 .

[164]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[165]  M. Arioli,et al.  Roundoff error analysis of algorithms based on Krylov subspace methods , 1996 .

[166]  Cornelis Vuik,et al.  A comparison of abstract versions of deflation, balancing and additive coarse grid correction preconditioners , 2008, Numer. Linear Algebra Appl..

[167]  Jonathan Richard Shewchuk,et al.  Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..

[168]  Lois Mansfield Damped Jacobi Preconditioning and Coarse Grid Deflation for Conjugate Gradient Iteration on Parallel Computers , 1991, SIAM J. Sci. Comput..

[169]  Abram Jujunashvili ANGLES BETWEEN INFINITE-DIMENSIONAL SUBSPACES , 2005 .

[170]  Cornelis Vuik,et al.  A Comparison of Deflation and the Balancing Preconditioner , 2005, SIAM J. Sci. Comput..

[171]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[172]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[173]  Andrew J. Wathen,et al.  Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.

[174]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[175]  Philipp Birken,et al.  Preconditioner updates applied to CFD model problems , 2008 .

[176]  Frédéric Guyomarc'h,et al.  An Augmented Conjugate Gradient Method for Solving Consecutive Symmetric Positive Definite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..