A new highly selective and turn-on fluorescence probe for detection of cyanide

[1]  Weihong Zhu,et al.  Steric hindrance-enforced distortion as a general strategy for the design of fluorescence "turn-on" cyanide probes. , 2013, Chemical communications.

[2]  Lanying Wang,et al.  A highly selective ratiometric and colorimetric chemosensor for cyanide detection , 2013 .

[3]  Weiping Cai,et al.  Trace detection of cyanide based on SERS effect of Ag nanoplate-built hollow microsphere arrays. , 2013, Journal of hazardous materials.

[4]  G. Ning,et al.  A new principle for selective sensing cyanide anions based on 2-hydroxy-naphthaldeazine compound , 2013 .

[5]  Amitava Das,et al.  A CN- specific turn-on phosphorescent probe with probable application for enzymatic assay and as an imaging reagent. , 2013, Chemical communications.

[6]  Weihong Zhu,et al.  Selective, sensitive and reversible "turn-on" fluorescent cyanide probes based on 2,2'-dipyridylaminoanthracene-Cu2+ ensembles. , 2012, Chemical communications.

[7]  Hae-Jo Kim,et al.  Highly selective sensing of cyanide by a benzochromene-based ratiometric fluorescence probe , 2012 .

[8]  Weihong Zhu,et al.  Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts. , 2012, Organic & biomolecular chemistry.

[9]  Ping Li,et al.  Ratiometric fluorescence imaging for distinguishing chloride concentration between normal and ischemic ventricular myocytes. , 2012, Chemical communications.

[10]  A. Saiardi,et al.  Influence of Inositol Pyrophosphates on Cellular Energy Dynamics , 2011, Science.

[11]  Anita C Jones,et al.  A turn-on fluorescence sensor for cyanide from mechanochemical reactions between quantum dots and copper complexes. , 2011, Chemical communications.

[12]  Jong Seung Kim,et al.  Coumarin-Cu(II) ensemble-based cyanide sensing chemodosimeter. , 2011, Organic letters.

[13]  Jalal Isaad,et al.  Colorimetric sensing of cyanide anions in aqueous media based on functional surface modification of natural cellulose materials , 2011 .

[14]  Philip A. Gale,et al.  From anion receptors to transporters. , 2011, Accounts of chemical research.

[15]  Hae-Jo Kim,et al.  Highly activated Michael acceptor by an intramolecular hydrogen bond as a fluorescence turn-on probe for cyanide. , 2010, Chemical communications.

[16]  S. Kubik Anion recognition in water. , 2010, Chemical Society reviews.

[17]  Philip A. Gale Anion receptor chemistry: highlights from 2008 and 2009. , 2010, Chemical Society reviews.

[18]  Jianbin Chao,et al.  A New Ring-opening Chromene Molecule: Colorimetric Detection of Cyanide Anion , 2010 .

[19]  E. Akkaya,et al.  Reaction-based sensing of fluoride ions using built-in triggers for intramolecular charge transfer and photoinduced electron transfer. , 2010, Organic letters.

[20]  Dongwhan Lee,et al.  Turn-on fluorescence detection of cyanide in water: activation of latent fluorophores through remote hydrogen bonds that mimic peptide beta-turn motif. , 2009, Journal of the American Chemical Society.

[21]  W. Lee,et al.  Ratiometric and turn-on monitoring for heavy and transition metal ions in aqueous solution with a fluorescent peptide sensor. , 2009, Talanta.

[22]  Philip A. Gale,et al.  Anion receptor chemistry: highlights from 2007. , 2009, Chemical Society reviews.

[23]  H. Tian,et al.  A highly sensitive and selective chemosensor for cyanide. , 2008, Talanta.

[24]  Gun-Hee Kim,et al.  Fluorescent chemodosimeter for selective detection of cyanide in water. , 2008, Organic letters.

[25]  D. Cacace,et al.  Spectrophotometric determination of aqueous cyanide using a revised phenolphthalin method. , 2007, Analytica chimica acta.

[26]  J. Rosentreter,et al.  Piezoelectric quartz crystal microbalance sensor for trace aqueous cyanide ion determination. , 2007, Analytical chemistry.

[27]  K. Ahn,et al.  Fluorescence modulation in anion sensing by introducing intramolecular H-bonding interactions in host-guest adducts. , 2006, Chemical communications.

[28]  J. Lakowicz,et al.  Enhanced fluorescence cyanide detection at physiologically lethal levels: reduced ICT-based signal transduction. , 2005, Journal of the American Chemical Society.

[29]  C. D. Geddes,et al.  Fluorescence intensity and lifetime-based cyanide sensitive probes for physiological safeguard. , 2004, Analytica chimica acta.

[30]  A. Safavi,et al.  Indirect determination of cyanide ion and hydrogen cyanide by adsorptive stripping voltammetry at a mercury electrode , 2004 .

[31]  Serge Cosnier,et al.  Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors. , 2004, Analytical chemistry.

[32]  Toshihiro Suzuki,et al.  Development of a method for estimating an accurate equivalence point in nickel titration of cyanide ions , 2003 .

[33]  F. Castellano,et al.  Luminescence lifetime-based sensor for cyanide and related anions. , 2002, Journal of the American Chemical Society.

[34]  Philip A. Gale,et al.  Anion Recognition and Sensing: The State of the Art and Future Perspectives. , 2001, Angewandte Chemie.

[35]  S. A. Shackelford,et al.  A Convenient One-Step Synthesis of 2-Hydroxy-1,3,5-Benzenetricarbaldehyde , 2000 .

[36]  R. Koenig Wildlife Deaths Are a Grim Wake-Up Call in Eastern Europe , 2000, Science.

[37]  T. Kumazawa,et al.  Determination of cyanide in whole blood by capillary gas chromatography with cryogenic oven trapping. , 1998, Analytical chemistry.

[38]  G. Muir Hazards in the chemical laboratory. , 1977 .