Measurement of primordial non-Gaussianity using the WMAP 5-year temperature skewness power spectrum

We constrain the primordial non-Gaussianity parameter of the local model f{sub NL} using the skewness power spectrum associated with the two-to-one cumulant correlator of cosmic microwave background temperature anisotropies. This bispectrum-related power spectrum was constructed after weighting the temperature map with the appropriate window functions to form an estimator that probes the multipolar dependence of the underlying bispectrum associated with the primordial non-Gaussianity. We also estimate a separate skewness power spectrum sensitive more strongly to unresolved point sources. When compared to previous attempts at measuring the primordial non-Gaussianity with WMAP data, our estimators have the main advantage that we do not collapse information to a single number. When model fitting the two-to-one skewness power spectrum, we make use of bispectra generated by the primordial non-Gaussianity, radio point sources, and lensing-secondary correlation. We analyze Q, V, and W-band WMAP 5-year data using the KQ75 mask out to l{sub max}=600. Using V and W-band data and marginalizing over model parameters related to point sources and lensing-secondary bispectrum, our overall and preferred constraint on f{sub NL} is 11.0{+-}23.7 at the 68% confidence level (-36.4

[1]  David N. Spergel,et al.  Measuring Primordial Non-Gaussianity in the Cosmic Microwave Background , 2003, astro-ph/0305189.

[2]  David N. Spergel,et al.  Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.

[3]  A. Tolley,et al.  Primordial non-Gaussianity, statistics of collapsed objects, and the integrated Sachs-Wolfe effect , 2008, 0806.1046.

[4]  Kendrick M. Smith,et al.  CMB lensing and primordial non-Gaussianity , 2009, 0905.4732.

[5]  Karim A. Malik,et al.  A general proof of the conservation of the curvature perturbation , 2004, astro-ph/0411220.

[6]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[7]  Bond,et al.  Nonlinear evolution of long-wavelength metric fluctuations in inflationary models. , 1990, Physical review. D, Particles and fields.

[8]  Stephen W. Hawking,et al.  The Development of Irregularities in a Single Bubble Inflationary Universe , 1982 .

[9]  Owen P. Leary,et al.  40: PATIENT-SPECIFIC PROGNOSTICATION AFTER TBI IS RELATED TO BLEED PHENOTYPE AND ANATOMIC LOCATION , 2006, Testament d'un patriote exécuté.

[10]  Microwave background bispectrum. II. A probe of the low redshift universe , 1998, astro-ph/9811251.

[11]  R. B. Barreiro,et al.  IMPROVED CONSTRAINTS ON PRIMORDIAL NON-GAUSSIANITY FOR THE WILKINSON MICROWAVE ANISOTROPY PROBE 5-YEAR DATA , 2009, 0902.1523.

[12]  I. Szapudi,et al.  Constraining Primordial Non-Gaussianities from the WMAP2 2-1 Cumulant Correlator Power Spectrum , 2006, astro-ph/0606394.

[13]  Max Tegmark,et al.  Is the Cosmic Microwave Background Really Non-Gaussian? , 1999, astro-ph/9904254.

[14]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[15]  David Tong,et al.  Scalar speed limits and cosmology: Acceleration from D-cceleration , 2003, Physical Review D.

[16]  Hume A. Feldman,et al.  Theory of cosmological perturbations , 1992 .

[17]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[18]  Integrated Sachs-Wolfe effect in cross-correlation: The observer's manual , 2004, astro-ph/0401166.

[19]  L. Abbott,et al.  Large Scale Anisotropy of the Microwave Background and the Amplitude of Energy Density Fluctuations in the Early Universe , 1984 .

[20]  U. Seljak,et al.  A Line of sight integration approach to cosmic microwave background anisotropies , 1996, astro-ph/9603033.

[21]  New mechanism for generating density perturbations from inflation , 2003, astro-ph/0303591.

[22]  Running non-Gaussianities in Dirac-Born-Infeld inflation , 2005, astro-ph/0507053.

[23]  B. Wandelt,et al.  Evidence of primordial non-Gaussianity (fNL) in the Wilkinson microwave anisotropy probe 3-year data at 2.8sigma. , 2008, Physical review letters.

[24]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[25]  Uros Seljak,et al.  The Sunyaev-Zel'dovich angular power spectrum as a probe of cosmological parameters , 2002 .

[26]  Domenico Marinucci,et al.  AN ESTIMATE OF THE PRIMORDIAL NON-GAUSSIANITY PARAMETER fNL USING THE NEEDLET BISPECTRUM FROM WMAP , 2009, 0901.3154.

[27]  S. Mollerach,et al.  Isocurvature baryon perturbations and inflation. , 1990, Physical review. D, Particles and fields.

[28]  J. Maldacena Non-Gaussian features of primordial fluctuations in single field inflationary models , 2002, astro-ph/0210603.

[29]  The Angular dependence of the three point correlation function of the cosmic microwave background radiation as predicted by inflationary cosmologies , 1992, astro-ph/9208001.

[30]  David Valls-Gabaud,et al.  Evidence for Scale-Scale Correlations in the Cosmic Microwave Background Radiation , 1998 .

[31]  D. Lyth,et al.  Inflationary prediction for primordial non-gaussianity. , 2005, Physical review letters.

[32]  P. Serra,et al.  Weak lensing of the primary CMB bispectrum , 2008, 0803.4194.

[33]  Misao Sasaki,et al.  A General Analytic Formula for the Spectral Index of the Density Perturbations Produced during Inflation. , 1995 .

[34]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[35]  Katsuhiko Sato,et al.  First-order phase transition of a vacuum and the expansion of the Universe , 1981 .

[36]  Christopher Hirata,et al.  Constraints on local primordial non-Gaussianity from large scale structure , 2008 .

[37]  Damon Afkari,et al.  ? ? ? ? ? ? ? ? ? ? ? ? ? 30 ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2011 .

[38]  Michael S. Turner,et al.  Spontaneous Creation of Almost Scale - Free Density Perturbations in an Inflationary Universe , 1983 .

[39]  A. Cooray,et al.  Weak Gravitational Lensing Bispectrum , 2000, astro-ph/0004151.

[40]  D. Kazanas Dynamics of the universe and spontaneous symmetry breaking , 1980 .

[41]  S. Matarrese,et al.  Non-Gaussianity from inflation: theory and observations , 2004 .

[42]  Edward J. Wollack,et al.  Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization, and Systematic Error Limits , 2006, astro-ph/0603452.

[43]  A. Melchiorri,et al.  SUBDEGREE SUNYAEV–ZEL'DOVICH SIGNAL FROM MULTIFREQUENCY BOOMERanG OBSERVATIONS , 2009, 0904.4313.

[44]  Non-Gaussian Aspects of Thermal and Kinetic Sunyaev-Zel'dovich Effects , 2001, astro-ph/0105063.

[45]  A. Starobinsky,et al.  Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations , 1982 .

[46]  Ghost condensation and a consistent infrared modification of gravity , 2003, hep-th/0312099.

[47]  K. Gorski,et al.  Three-Point Correlations in the COBE DMR 2 Year Anisotropy Maps , 1995, astro-ph/9503033.

[48]  Andrei Linde Generation of isothermal density perturbations in the inflationary universe , 1984 .

[49]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[50]  LARGE-SCALE SUNYAEV-ZELDOVICH EFFECT: MEASURING STATISTICAL PROPERTIES WITH MULTIFREQUENCY MAPS , 2000, astro-ph/0002238.

[51]  Alejandro Gangui,et al.  Submitted to the Astrophysical Journal , 1993 .

[52]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[53]  P. Serra,et al.  Impact of Secondary non-Gaussianities on the Search for Primordial Non-Gaussianity with CMB Maps , 2008, 0801.3276.

[54]  T. J. Allen,et al.  Non-gaussian density perturbations in inflationary cosmologies , 1987 .

[55]  Alan H. Guth,et al.  Fluctuations in the New Inflationary Universe , 1982 .

[56]  Integrated Sachs-Wolfe effect: Large scale structure correlation , 2001, astro-ph/0112408.