MicroRNA in Cancer: The Involvement of Aberrant MicroRNA Biogenesis Regulatory Pathways.

MicroRNAs (miRNAs) are small, noncoding RNAs that influence diverse biological outcomes through the repression of target genes during normal development and pathological responses. In particular, the alteration of miRNA expression has dramatic consequences for the progression of tumorigenesis. miRNAs undergo two processing steps that transform a long primary transcript into the mature miRNA. Although the general miRNA biogenesis pathway is well established, it is clear that not all miRNAs are created equally. Recent studies show that miRNA expression is controlled by diverse mechanisms in response to cellular stimuli. In this review, we discuss the mechanisms that govern the regulation of miRNA biogenesis with particular focus on how these mechanisms are perturbed in cancer.

[1]  D. Jong,et al.  Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma , 2007, Oncogene.

[2]  Haifan Lin,et al.  MicroRNAs: key regulators of stem cells , 2009, Nature Reviews Molecular Cell Biology.

[3]  K. Claffey,et al.  Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. , 2009, Endocrinology.

[4]  Michael A. Beer,et al.  Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation , 2009, Proceedings of the National Academy of Sciences.

[5]  D. Haussler,et al.  Posttranscriptional Crossregulation between Drosha and DGCR8 , 2009, Cell.

[6]  Z. Paroo,et al.  Phosphorylation of the Human MicroRNA-Generating Complex Mediates MAPK/Erk Signaling , 2009, Cell.

[7]  Keara M. Lane,et al.  Dicer1 functions as a haploinsufficient tumor suppressor. , 2009, Genes & development.

[8]  L. Penn,et al.  Reflecting on 25 years with MYC , 2008, Nature Reviews Cancer.

[9]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[10]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[12]  E. Wentzel,et al.  Cell–cell contact globally activates microRNA biogenesis , 2009, Proceedings of the National Academy of Sciences.

[13]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[14]  C. Semple,et al.  Posttranscriptional Regulation of miRNAs Harboring Conserved Terminal Loops , 2008, Molecular cell.

[15]  Yunqing Li,et al.  microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. , 2008, Cancer research.

[16]  Sebastian Kadener,et al.  Genome-wide identification of targets of the drosha-pasha/DGCR8 complex. , 2009, RNA.

[17]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Michael T. McManus,et al.  LPS induces KH‐type splicing regulatory protein‐dependent processing of microRNA‐155 precursors in macrophages , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[19]  S. Tapscott,et al.  The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. , 2006, Developmental cell.

[20]  B. Cullen,et al.  Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha , 2005, The EMBO journal.

[21]  C. Croce,et al.  MiR-15a and miR-16-1 cluster functions in human leukemia , 2008, Proceedings of the National Academy of Sciences.

[22]  C. Joo,et al.  TUT4 in Concert with Lin28 Suppresses MicroRNA Biogenesis through Pre-MicroRNA Uridylation , 2009, Cell.

[23]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[24]  R. Eisenman,et al.  Myc's broad reach. , 2008, Genes & development.

[25]  C. Burge,et al.  Most mammalian mRNAs are conserved targets of microRNAs. , 2008, Genome research.

[26]  Peng Jin,et al.  Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. , 2007, Human molecular genetics.

[27]  A. Hata,et al.  Regulation of MicroRNA Biogenesis: A miRiad of mechanisms , 2009, Cell Communication and Signaling.

[28]  Shuta Tomida,et al.  Reduced expression of Dicer associated with poor prognosis in lung cancer patients , 2005, Cancer science.

[29]  B. Davidson,et al.  RNA polymerase III transcribes human microRNAs , 2006, Nature Structural &Molecular Biology.

[30]  Wei Yan,et al.  Tissue-dependent paired expression of miRNAs , 2007, Nucleic acids research.

[31]  D. Kaul,et al.  Defective RNA-mediated c-myc gene silencing pathway in Burkitt's lymphoma. , 2004, Biochemical and biophysical research communications.

[32]  T. Wurdinger,et al.  MicroRNA 21 Promotes Glioma Invasion by Targeting Matrix Metalloproteinase Regulators , 2008, Molecular and Cellular Biology.

[33]  T. Golub,et al.  Impaired microRNA processing enhances cellular transformation and tumorigenesis , 2007, Nature Genetics.

[34]  W. Rottbauer,et al.  MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts , 2008, Nature.

[35]  Y. Akao,et al.  MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. , 2006, Oncology reports.

[36]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[37]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[38]  Leonard D. Goldstein,et al.  Global microRNA profiles in cervical squamous cell carcinoma depend on Drosha expression levels , 2007, The Journal of pathology.

[39]  M. Pisano,et al.  Functional interaction between Smad, CREB binding protein, and p68 RNA helicase. , 2004, Biochemical and biophysical research communications.

[40]  J. M. Thomson,et al.  Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. , 2008, RNA.

[41]  Peter A. Jones,et al.  Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. , 2006, Cancer cell.

[42]  J. Richter,et al.  Human let-7a miRNA blocks protein production on actively translating polyribosomes , 2006, Nature Structural &Molecular Biology.

[43]  Anton J. Enright,et al.  A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. , 2007, Genes & development.

[44]  S. Minoshima,et al.  Molecular cloning and expression analysis of a novel gene DGCR8 located in the DiGeorge syndrome chromosomal region. , 2003, Biochemical and biophysical research communications.

[45]  G. Hannon,et al.  Processing of primary microRNAs by the Microprocessor complex , 2004, Nature.

[46]  M. Wood,et al.  Localization of double-stranded small interfering RNA to cytoplasmic processing bodies is Ago2 dependent and results in up-regulation of GW182 and Argonaute-2. , 2009, Molecular biology of the cell.

[47]  Eric C. Lai,et al.  Biological principles of microRNA-mediated regulation: shared themes amid diversity , 2008, Nature Reviews Genetics.

[48]  Martin J. Simard,et al.  Argonaute proteins: key players in RNA silencing , 2008, Nature Reviews Molecular Cell Biology.

[49]  Paul Pavlidis,et al.  Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model , 2008, Nature Genetics.

[50]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Anton J. Enright,et al.  Genomic analysis of human microRNA transcripts , 2007, Proceedings of the National Academy of Sciences.

[52]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[53]  A. Krogh,et al.  Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[54]  W. S. Hayward,et al.  Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: evidence for stage-specific events , 1989, Molecular and cellular biology.

[55]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[56]  F. Slack,et al.  A SNP in a let-7 microRNA complementary site in the KRAS 3' untranslated region increases non-small cell lung cancer risk. , 2008, Cancer research.

[57]  P. Sharp,et al.  Proliferating Cells Express mRNAs with Shortened 3' Untranslated Regions and Fewer MicroRNA Target Sites , 2008, Science.

[58]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[59]  N. Colburn,et al.  MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene , 2008, Oncogene.

[60]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[61]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[62]  C. Benz,et al.  Rapid alteration of microRNA levels by histone deacetylase inhibition. , 2006, Cancer research.

[63]  S. Ropero,et al.  A microRNA DNA methylation signature for human cancer metastasis , 2008, Proceedings of the National Academy of Sciences.

[64]  Thomas D. Schmittgen,et al.  Expression profiling identifies microRNA signature in pancreatic cancer , 2006, International journal of cancer.

[65]  F. Slack,et al.  The let-7 family of microRNAs. , 2008, Trends in cell biology.

[66]  Joshua J. Forman,et al.  “Myc’ed Messages”: Myc Induces Transcription of E2F1 while Inhibiting Its Translation via a microRNA Polycistron , 2007, PLoS genetics.

[67]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[68]  F. Fuller-Pace DExD/H box RNA helicases: multifunctional proteins with important roles in transcriptional regulation , 2006, Nucleic acids research.

[69]  Carla Oliveira,et al.  A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function , 2009, Nature Genetics.

[70]  G. Stein,et al.  p68 (Ddx5) interacts with Runx2 and regulates osteoblast differentiation , 2008, Journal of cellular biochemistry.

[71]  Olga Varlamova,et al.  A cAMP-response element binding protein-induced microRNA regulates neuronal morphogenesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Vandesompele,et al.  Monoallelic but not biallelic loss of Dicer1 promotes tumorigenesis in vivo , 2010, Cell Death and Differentiation.

[73]  Yuriy Gusev,et al.  Systematic evaluation of microRNA processing patterns in tissues, cell lines, and tumors. , 2007, RNA.

[74]  Michael Z Michael,et al.  Reduced accumulation of specific microRNAs in colorectal neoplasia. , 2003, Molecular cancer research : MCR.

[75]  John J Rossi,et al.  MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors , 2007, Proceedings of the National Academy of Sciences.

[76]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[77]  R. Plasterk,et al.  The diverse functions of microRNAs in animal development and disease. , 2006, Developmental cell.

[78]  D. Banerjee,et al.  A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance , 2007, Proceedings of the National Academy of Sciences.

[79]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[80]  S. Minoshima,et al.  Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. , 2007, Experimental cell research.

[81]  H. Tagawa,et al.  Synergistic action of the microRNA‐17 polycistron and Myc in aggressive cancer development , 2007, Cancer science.

[82]  Danish Sayed,et al.  MicroRNA-21 Is a Downstream Effector of AKT That Mediates Its Antiapoptotic Effects via Suppression of Fas Ligand* , 2010, The Journal of Biological Chemistry.

[83]  P. Marsden,et al.  Extensive variation in the 5'-UTR of Dicer mRNAs influences translational efficiency. , 2005, Biochemical and biophysical research communications.

[84]  Phillip A Sharp,et al.  Suppression of non-small cell lung tumor development by the let-7 microRNA family , 2008, Proceedings of the National Academy of Sciences.

[85]  X. Chen,et al.  Role of miR-143 targeting KRAS in colorectal tumorigenesis , 2009, Oncogene.

[86]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[87]  G. Hannon,et al.  C . elegans involved in developmental timing in Dicer functions in RNA interference and in synthesis of small RNA , 2001 .

[88]  Sheng Yin,et al.  Heme is involved in microRNA processing , 2007, Nature Structural &Molecular Biology.

[89]  Barbara Jarzab,et al.  Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma , 2008, Proceedings of the National Academy of Sciences.

[90]  Simak Ali,et al.  The DEAD box RNA helicases p68 (Ddx5) and p72 (Ddx17): novel transcriptional co-regulators. , 2008, Biochemical Society transactions.

[91]  S. Culine,et al.  miR-143 Interferes with ERK5 Signaling, and Abrogates Prostate Cancer Progression in Mice , 2009, PloS one.

[92]  N. Yoo,et al.  Somatic mutations and losses of expression of microRNA regulation‐related genes AGO2 and TNRC6A in gastric and colorectal cancers , 2010, The Journal of pathology.

[93]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[94]  J. Graber,et al.  Global changes in processing of mRNA 3' untranslated regions characterize clinically distinct cancer subtypes. , 2009, Cancer research.

[95]  Shuomin Zhu,et al.  MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1)* , 2007, Journal of Biological Chemistry.

[96]  Anne Gatignol,et al.  TRBP, a regulator of cellular PKR and HIV‐1 virus expression, interacts with Dicer and functions in RNA silencing , 2005, EMBO reports.

[97]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[98]  Tsung-Cheng Chang,et al.  Widespread microRNA repression by Myc contributes to tumorigenesis , 2008, Nature Genetics.

[99]  Y. Fujii,et al.  RNASEN Regulates Cell Proliferation and Affects Survival in Esophageal Cancer Patients , 2006, Clinical Cancer Research.

[100]  George P Cobb,et al.  microRNAs as oncogenes and tumor suppressors. , 2007, Developmental biology.

[101]  Rajiv Dhir,et al.  Up-regulation of dicer, a component of the MicroRNA machinery, in prostate adenocarcinoma. , 2006, The American journal of pathology.

[102]  M. Esteller,et al.  How epigenetics can explain human metastasis: A new role for microRNAs , 2009 .

[103]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[104]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[105]  Joel S Parker,et al.  Extensive post-transcriptional regulation of microRNAs and its implications for cancer. , 2006, Genes & development.

[106]  Catherine Dargemont,et al.  Minihelix-containing RNAs Mediate Exportin-5-dependent Nuclear Export of the Double-stranded RNA-binding Protein ILF3* , 2004, Journal of Biological Chemistry.

[107]  Hiroshi I. Suzuki,et al.  Modulation of microRNA processing by p53 , 2009, Nature.

[108]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[109]  R. Gregory,et al.  Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in embryonic stem cells , 2009, Nature Structural &Molecular Biology.

[110]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[112]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[113]  C. Croce,et al.  MicroRNAs in Cancer. , 2009, Annual review of medicine.

[114]  R. Shiekhattar,et al.  Human RISC Couples MicroRNA Biogenesis and Posttranscriptional Gene Silencing , 2005, Cell.

[115]  B. Tian,et al.  Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development , 2009, Proceedings of the National Academy of Sciences.

[116]  G. Obernosterer,et al.  Post-transcriptional regulation of microRNA expression. , 2006, RNA.

[117]  Jun S. Song,et al.  Chromatin structure analyses identify miRNA promoters , 2008 .

[118]  A. Hata,et al.  Induction of MicroRNA-221 by Platelet-derived Growth Factor Signaling Is Critical for Modulation of Vascular Smooth Muscle Phenotype* , 2009, Journal of Biological Chemistry.

[119]  Moshe Oren,et al.  Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. , 2007, Molecular cell.

[120]  R. Weinberg,et al.  Tumour invasion and metastasis initiated by microRNA-10b in breast cancer , 2007, Nature.

[121]  F. Fuller-Pace,et al.  The RNA helicase p68 is a novel androgen receptor coactivator involved in splicing and is overexpressed in prostate cancer. , 2008, Cancer research.

[122]  C. Nusbaum,et al.  Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. , 2010, Genes & development.

[123]  K. Zatloukal,et al.  miR‐29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis , 2009, EMBO reports.

[124]  Patricia Soteropoulos,et al.  MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. , 2007, Cancer research.

[125]  I. Bozzoni,et al.  Primary microRNA transcripts are processed co-transcriptionally , 2008, Nature Structural &Molecular Biology.

[126]  D. Bartel,et al.  Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression , 2009, Nature Biotechnology.

[127]  L. Smirnova,et al.  The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2 , 2009, Nature Cell Biology.

[128]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[129]  Lena Smirnova,et al.  The FASEB Journal • Research Communication Post-transcriptional regulation of the let-7 microRNA during neural cell specification , 2022 .

[130]  Gyorgy Hutvagner,et al.  Small RNA asymmetry in RNAi: Function in RISC assembly and gene regulation , 2005, FEBS letters.

[131]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[132]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[133]  N. Lau,et al.  The coming of age for Piwi proteins. , 2007, Molecular cell.

[134]  S. Balasubramanian,et al.  LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans , 2009, Nature Structural &Molecular Biology.

[135]  L. Smirnova,et al.  A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment , 2008, Nature Cell Biology.

[136]  Domenico Coppola,et al.  MicroRNA-155 Regulates Cell Survival, Growth, and Chemosensitivity by Targeting FOXO3a in Breast Cancer* , 2010, The Journal of Biological Chemistry.

[137]  D. Haber,et al.  Dual Role for Argonautes in MicroRNA Processing and Posttranscriptional Regulation of MicroRNA Expression , 2007, Cell.

[138]  E. Hatano,et al.  The NF90-NF45 Complex Functions as a Negative Regulator in the MicroRNA Processing Pathway , 2009, Molecular and Cellular Biology.

[139]  D. Corcoran,et al.  Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data , 2009, PloS one.

[140]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[141]  A. Pasquinelli,et al.  A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the let-7 Small Temporal RNA , 2001, Science.

[142]  A. Hata,et al.  Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. , 2010, Molecular cell.

[143]  Shuomin Zhu,et al.  miR-21-mediated tumor growth , 2007, Oncogene.

[144]  V. Kim,et al.  The role of PACT in the RNA silencing pathway , 2006, The EMBO journal.

[145]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[146]  Piotr Sliz,et al.  Determinants of MicroRNA Processing Inhibition by the Developmentally Regulated RNA-binding Protein Lin28* , 2008, Journal of Biological Chemistry.

[147]  Simion I. Chiosea,et al.  Overexpression of Dicer in precursor lesions of lung adenocarcinoma. , 2007, Cancer research.

[148]  D. Metzger,et al.  Purification and Identification of p68 RNA Helicase Acting as a Transcriptional Coactivator Specific for the Activation Function 1 of Human Estrogen Receptor α , 1999, Molecular and Cellular Biology.

[149]  J. Cáceres,et al.  Antagonistic role of hnRNP A1 and KSRP in the regulation of Let-7a biogenesis , 2010, Nature Structural &Molecular Biology.

[150]  M. Rosenfeld,et al.  The RNA-binding Protein KSRP Promotes the Biogenesis of a Subset of miRNAs , 2016 .

[151]  S. Guil,et al.  The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a , 2007, Nature Structural &Molecular Biology.

[152]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[153]  J. Lieberman,et al.  Molecular basis for antagonism between PDGF and the TGFβ family of signalling pathways by control of miR‐24 expression , 2010, The EMBO journal.

[154]  R. Stephens,et al.  Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. , 2008, Cancer research.

[155]  Muller Fabbri,et al.  Modulation of mismatch repair and genomic stability by miR-155 , 2010, Proceedings of the National Academy of Sciences.

[156]  C. Croce,et al.  Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing , 2007, Proceedings of the National Academy of Sciences.

[157]  C. Croce,et al.  MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. , 2007, JAMA.

[158]  B. O’Malley,et al.  DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs , 2007, Nature Cell Biology.

[159]  George A Calin,et al.  MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. , 2008, JAMA.