Bioenergy application of Dunaliella salina SA 134 grown at various salinity levels for lipid production

[1]  A. Oren Glycerol metabolism in hypersaline environments. , 2017, Environmental microbiology.

[2]  N. Desai Algae: The Future of Bioenergy , 2017 .

[3]  S. Vaidyanathan,et al.  The Search for a Lipid Trigger: The Effect of Salt Stress on the Lipid Profile of the Model Microalgal Species Chlamydomonas reinhardtii for Biofuels Production , 2016, Current biotechnology.

[4]  Z. Sárossy,et al.  Neutral lipid production in Dunaliella salina during osmotic stress and adaptation , 2016, Journal of Applied Phycology.

[5]  V. Thakur Biodiesel - An Alternative Method for Energy Crisis: A Review , 2016 .

[6]  A. Oren Life in Hypersaline Environments , 2016 .

[7]  C. Benning,et al.  Triacylglycerol Accumulation in Photosynthetic Cells in Plants and Algae. , 2016, Sub-cellular biochemistry.

[8]  Y. Li-Beisson,et al.  Lipids in Plant and Algae Development , 2016, Subcellular Biochemistry.

[9]  A. Zamir,et al.  Origin of β-Carotene-Rich Plastoglobuli in Dunaliella bardawil1[C][W][OPEN] , 2014, Plant Physiology.

[10]  R. O. Cañizares-Villanueva,et al.  Osmotic Stress Effect over Carbohydrate Production in a Native Starin of Scenedesmus sp. , 2014 .

[11]  Masato Baba,et al.  Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. , 2013, Journal of proteomics.

[12]  Y. Oh,et al.  Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress , 2013, Bioprocess and Biosystems Engineering.

[13]  H. Egsgaard,et al.  Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. , 2012, Plant physiology and biochemistry : PPB.

[14]  S. Mayfield,et al.  Exploiting diversity and synthetic biology for the production of algal biofuels , 2012, Nature.

[15]  David Dah-Wei Tsai,et al.  Growth condition study of algae function in ecosystem for CO2 bio-fixation. , 2012, Journal of photochemistry and photobiology. B, Biology.

[16]  O. Edenhofer,et al.  Renewable energy sources and climate change mitigation : special report of the Intergovernmental Panel on Climate Change , 2011 .

[17]  Cong Wang,et al.  Quantitative analysis of fatty-acid-based biofuels produced by wild-type and genetically engineered cyanobacteria by gas chromatography-mass spectrometry. , 2011, Journal of chromatography. A.

[18]  C. Abdelly,et al.  OPTIMIZATION OF SALT CONCENTRATIONS FOR A HIGHER CAROTENOID PRODUCTION IN DUNALIELLA SALINA (CHLOROPHYCEAE) 1 , 2011, Journal of phycology.

[19]  Thomas Bruckner,et al.  Summary for Policy Makers: Intergovernmental Panel on Climate Change Special Report Renewable Energy Sources (SRREN) , 2011 .

[20]  D. Das,et al.  Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. , 2011, Bioresource technology.

[21]  Chao Yang,et al.  Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst. , 2011, Bioresource technology.

[22]  Namita Singh,et al.  Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda , 2011 .

[23]  Jo‐Shu Chang,et al.  Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. , 2011, Bioresource technology.

[24]  P. Mathad,et al.  Impact of Salinity on the Physiological and Biochemical Traits of Chlorella vulgaris Beijerinck. , 2010 .

[25]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[26]  Olivier Bernard,et al.  Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. , 2009, Biotechnology advances.

[27]  A. Converti,et al.  EFFECT OF TEMPERATURE AND NITROGEN CONCENTRATION ON THE GROWTH AND LIPID CONTENT OF NANNOCHLOROPSIS OCULATA AND CHLORELLA VULGARIS FOR BIODIESEL PRODUCTION , 2009 .

[28]  Young Soo Kim,et al.  Review: A chance for Korea to advance algal-biodiesel technology , 2009 .

[29]  P. Wiley Photosynthetic and oxidative stress in the green alga Dunaliella tertiolecta: The effects of UV-B and UV-A radiation , 2009 .

[30]  C. Lan,et al.  Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans , 2008, Applied Microbiology and Biotechnology.

[31]  Zhi-Wei Ye,et al.  Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. , 2008, Biotechnology advances.

[32]  Bai-cheng Zhou,et al.  Effect of iron on growth and lipid accumulation in Chlorella vulgaris. , 2008, Bioresource technology.

[33]  K. Tran,et al.  Towards Sustainable Production of Biofuels from Microalgae , 2008, International journal of molecular sciences.

[34]  Y. Chisti Biodiesel from microalgae beats bioethanol. , 2008, Trends in biotechnology.

[35]  H. Iwamoto,et al.  Industrial Production of Microalgal Cell‐Mass and Secondary Products ‐ Major Industrial Species: Chlorella , 2007 .

[36]  Karla A. Lawson,et al.  Response: Re: Multivitamin Use and Risk of Prostate Cancer in the National Institutes of Health—AARP Diet and Health Study , 2007 .

[37]  Steve Hickey,et al.  Re: Multivitamin use and risk of prostate cancer in the National Institutes of Health-AARP Diet and Health Study. , 2007, Journal of the National Cancer Institute.

[38]  D. Robledo,et al.  Physiological characterization of Dunaliella sp. (Chlorophyta, Volvocales) from Yucatan, Mexico. , 2007, Bioresource technology.

[39]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[40]  R. Raja,et al.  Exploitation of Dunaliella for β-carotene production , 2007, Applied Microbiology and Biotechnology.

[41]  Energy Agency World Energy Outlook 2007 : China and India Insights , 2007 .

[42]  T. Mendoza Are biofuels really beneficial for humanity , 2007 .

[43]  R. Raja,et al.  Exploitation of Dunaliella for beta-carotene production. , 2007, Applied microbiology and biotechnology.

[44]  Karseno,et al.  Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. , 2006, Journal of bioscience and bioengineering.

[45]  M. Fazeli,et al.  CAROTENOIDS ACCUMULATION BY DUNALIELLA TERTIOLECTA (LAKE URMIA ISOLATE) AND DUNALIELLA SALINA (CCAP 19/18 & WT) UNDER STRESS CONDITIONS , 2006 .

[46]  J. Avery Critical review. , 2006, The Journal of the Arkansas Medical Society.

[47]  S. Purton,et al.  Microalgae as bioreactors , 2005, Plant Cell Reports.

[48]  Eric C. Henry,et al.  HANDBOOK OF MICROALGAL CULTURE: BIOTECHNOLOGY AND APPLIED PHYCOLOGY , 2004 .

[49]  A. Moradshahi,et al.  INFLUENCE OF SALINITY ON THE GROWTH, PIGMENTATION AND ASCORBATE PEROXIDASE ACTIVITY OF DUNALIELLA SALINA ISOLATED FROM MAHARLU SALT LAKE IN SHIRAZ , 2004 .

[50]  S. Mudge,et al.  Effects of ionic strength on the production of short chain volatile hydrocarbons by Dunaliella salina (Teodoresco). , 2004, Chemosphere.

[51]  M. Tredici,et al.  Recent research on Spirulina in Italy , 1987, Hydrobiologia.

[52]  R. Reed,et al.  Osmotic adjustment in Spirulina platensis , 1985, Planta.

[53]  L. Borowitzka,et al.  The salt relations of marine and halophilic species of the unicellular green alga,Dunaliella , 1974, Archives of Microbiology.

[54]  L. S. Jahnke,et al.  Long-term hyposaline and hypersaline stresses produce distinct antioxidant responses in the marine alga Dunaliella tertiolecta. , 2003, Journal of plant physiology.

[55]  Chaofu Lu,et al.  Arabidopsis Mutants Deficient in Diacylglycerol Acyltransferase Display Increased Sensitivity to Abscisic Acid, Sugars, and Osmotic Stress during Germination and Seedling Development1 , 2002, Plant Physiology.

[56]  M. Janssen,et al.  Cultivation of microalgae: effect of light/dark cycles on biomass yield , 2002 .

[57]  R. Heidari,et al.  EFFECTS OF SALT AND IRRADIANCE STRESS ON PHOTOSYNTHETIC PIGMENTS ANDPROTEINS IN DUNALIELLA SALINA TEODORESCO , 2000 .

[58]  A. Zamir,et al.  A Salt-Induced 60-Kilodalton Plasma Membrane Protein Plays a Potential Role in the Extreme Halotolerance of the Alga Dunaliella , 1994, Plant physiology.

[59]  A. Ben‐Amotz,et al.  Dunaliella: Physiology, Biochemistry, and Biotechnology , 1992 .

[60]  M. Ghannoum,et al.  Correlative Changes of Growth, Pigmentation and Lipid Composition of Dunaliella salina in Response to Halostress , 1987 .

[61]  Mark A. Ragan,et al.  Twelfth International Seaweed Symposium , 1987, Developments in Hydrobiology.

[62]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[63]  A. Wellburn,et al.  Formulae and Program to Determine Total Carotenoids and Chlorophylls A and B of Leaf Extracts in Different Solvents , 1984 .

[64]  C. Sybesma,et al.  Advances in Photosynthesis Research , 1984, Advances in Agricultural Biotechnology.

[65]  A. Ben‐Amotz,et al.  On the Factors Which Determine Massive beta-Carotene Accumulation in the Halotolerant Alga Dunaliella bardawil. , 1983, Plant physiology.

[66]  R D MacElroy,et al.  Effects of Salts on the Halophilic Alga Dunaliella viridis , 1968, Journal of bacteriology.