High performance medical robot requirements and accuracy analysis

Abstract The treatment of disease using particle beams requires highly accurate patient positioning. Patients must be well immobilized and precisely aligned with the treatment beam to take full advantage of the dose localization potential. Robots can be used as high accuracy patient positioning systems. In this paper, the first such implementation using robotics techniques for patient positioning will be discussed. This robot is being developed for the Northeast Proton Therapy Center at the Massachusetts General Hospital. The unique requirements and design characteristics of the patient positioning system are presented. Of special interest is the system’s patient positioning accuracy. A systematic methodology to perform the error analysis of serial link manipulators and its application to the PPS is described. Experimental measurements that verified the validity of the method are shown.

[1]  M. Goitein,et al.  Accuracy of radiation field alignment in clinical practice. , 1985, International journal of radiation oncology, biology, physics.

[2]  R. Cipra,et al.  A Method for Determining and Correcting Robot Position and Orientation Errors Due to Manufacturing , 1988 .

[3]  J. Ziegert,et al.  Description of Machine Tool Errors Using Screw Coordinates , 1992 .

[4]  Satoshi Hashino Aiding robots , 1992, Adv. Robotics.

[5]  Placid Mathew Ferreira,et al.  Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools , 1993 .

[6]  R. G. Fenton,et al.  Optimum Tolerancing of Planar Mechanisms Based on an Error Sensitivity Analysis , 1993 .

[7]  K. C. Gupta,et al.  Identification of Position-Independent Robot Parameter Errors Using Special Jacobian Matrices , 1993, Int. J. Robotics Res..

[8]  Beno Benhabib,et al.  Computer-aided joint error analysis of robots , 1987, IEEE J. Robotics Autom..

[9]  Chi-Haur Wu,et al.  A Kinematic CAD Tool for the Design and Control of a Robot Manipulator , 1984 .

[10]  A. Slocum,et al.  Precision Machine Design , 1992 .

[11]  P. Lin,et al.  Direct volumetric error evaluation for multi-axis machines , 1993 .

[12]  Kwun-Lon Ting,et al.  Performance Quality and Tolerance Sensitivity of Mechanisms , 1996 .

[13]  Hanqi Zhuang,et al.  Optimal selection of measurement configurations for robot calibration using simulated annealing , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[14]  C. Richard Liu,et al.  An analytical quadratic model for the geometric error of a machine tool , 1986 .

[15]  Hanqi Zhuang,et al.  A complete and parametrically continuous kinematic model for robot manipulators , 1992, IEEE Trans. Robotics Autom..

[16]  E. B. Magrab,et al.  A General Procedure to Evaluate Robot Positioning Errors , 1987 .

[17]  J. Flanz Large medical gantries , 1995, Proceedings Particle Accelerator Conference.

[18]  J. A. Soons,et al.  Modeling the errors of multi-axis machines : a general methodology , 1992 .

[19]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[20]  D. S. Dugdale,et al.  Introduction to the Mechanics of Solids , 1967 .

[21]  J Flanz,et al.  Overview of the MGH-Northeast Proton Therapy Center plans and progress , 1995 .

[22]  William K. Veitschegger,et al.  Robot accuracy analysis based on kinematics , 1986, IEEE J. Robotics Autom..

[23]  John M. Hollerbach,et al.  A survey of kinematic calibration , 1989 .

[24]  Zvi S. Roth,et al.  Fundamentals of Manipulator Calibration , 1991 .

[25]  Lynette A. Jones,et al.  Ophthalmic microsurgical robot and surgical simulator , 1995, Other Conferences.

[26]  Russell H. Taylor,et al.  Development of a Surgical Robot for Cementless Total Hip Arthroplasty , 1992, Clinical orthopaedics and related research.