Cortical thickness gradients in structural hierarchies

MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used—the thickness of the cortex—shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species—macaque and human—and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure–function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses.

[1]  Barbara L Finlay,et al.  Systematic, cross-cortex variation in neuron numbers in rodents and primates. , 2015, Cerebral cortex.

[2]  J. Kaas,et al.  Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys , 1998, The Journal of comparative neurology.

[3]  M. D’Esposito,et al.  Is the rostro-caudal axis of the frontal lobe hierarchical? , 2009, Nature Reviews Neuroscience.

[4]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[5]  Michelle C. LaPlaca,et al.  Synapse-to-neuron ratio is inversely related to neuronal density in mature neuronal cultures , 2010, Brain Research.

[6]  The Math Works, Inc. The Math Works Inc , 1991, International Conference on Advances in System Simulation.

[7]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[8]  D. B. Leitch,et al.  Neuron densities vary across and within cortical areas in primates , 2010, Proceedings of the National Academy of Sciences.

[9]  D. Maurer,et al.  Multiple sensitive periods in human visual development: evidence from visually deprived children. , 2005, Developmental psychobiology.

[10]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[11]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[12]  Jay Hegdé,et al.  Reappraising the Functional Implications of the Primate Visual Anatomical Hierarchy , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[13]  G. Elston Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. , 2003, Cerebral cortex.

[14]  A. H. Bond,et al.  An information-processing analysis of the functional architecture of the primate neocortex. , 2004, Journal of theoretical biology.

[15]  Alan C. Evans,et al.  Where in-vivo imaging meets cytoarchitectonics: The relationship between cortical thickness and neuronal density measured with high-resolution [18F]flumazenil-PET , 2011, NeuroImage.

[16]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[17]  Daniel S. Marcus,et al.  Obscuring Surface Anatomy in Volumetric Imaging Data , 2012, Neuroinformatics.

[18]  I. Melle,et al.  Cortical Volume, Surface Area, and Thickness in Schizophrenia and Bipolar Disorder , 2012, Biological Psychiatry.

[19]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[20]  John Suckling,et al.  Consistency and interpretation of changes in millimeter-scale cortical intrinsic curvature across three independent datasets in schizophrenia☆ , 2012, NeuroImage.

[21]  David Badre,et al.  Cognitive control, hierarchy, and the rostro–caudal organization of the frontal lobes , 2008, Trends in Cognitive Sciences.

[22]  D. V. van Essen,et al.  Windows on the brain: the emerging role of atlases and databases in neuroscience , 2002, Current Opinion in Neurobiology.

[23]  Barbara L. Finlay,et al.  Systematic, balancing gradients in neuron density and number across the primate isocortex , 2012, Front. Neuroanat..

[24]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[25]  Henry Kennedy,et al.  Early specification of the hierarchical organization of visual cortical areas in the macaque monkey. , 2002, Cerebral cortex.

[26]  Alan C. Evans,et al.  Cortical thickness analysis examined through power analysis and a population simulation , 2005, NeuroImage.

[27]  George Paxinos,et al.  The Mouse Brain in Stereotaxic Coordinates , 2001 .

[28]  Henry Kennedy,et al.  The development of cortical connections , 2006, The European journal of neuroscience.

[29]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[30]  Ruben Schmidt,et al.  Linking Macroscale Graph Analytical Organization to Microscale Neuroarchitectonics in the Macaque Connectome , 2014, The Journal of Neuroscience.

[31]  G. Palm,et al.  Density of neurons and synapses in the cerebral cortex of the mouse , 1989, The Journal of comparative neurology.

[32]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[33]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[34]  John Suckling,et al.  Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms. , 2013, JAMA psychiatry.

[35]  J. Bullier,et al.  Functional interactions between areas V1 and V2 in the monkey , 1996, Journal of Physiology-Paris.

[36]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[37]  Giancarlo Ferrigno,et al.  Validation of FreeSurfer-Estimated Brain Cortical Thickness: Comparison with Histologic Measurements , 2014, Neuroinformatics.

[38]  P S Goldman-Rakic,et al.  Development of cortical circuitry and cognitive function. , 1987, Child development.

[39]  P. Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. , 1995, Cerebral cortex.

[40]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[41]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[42]  W. Welker,et al.  Why Does Cerebral Cortex Fissure and Fold ? A Review of Determinants of Gyri and Sulci , 2022 .

[43]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[44]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[45]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[46]  J. Kaas,et al.  Auditory processing in primate cerebral cortex , 1999, Current Opinion in Neurobiology.

[47]  Y. Iwamura Hierarchical somatosensory processing , 1998, Current Opinion in Neurobiology.

[48]  Thomas F. Nugent,et al.  Dynamic mapping of human cortical development during childhood through early adulthood. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Rauschecker,et al.  Hierarchical Organization of the Human Auditory Cortex Revealed by Functional Magnetic Resonance Imaging , 2001, Journal of Cognitive Neuroscience.

[50]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[51]  C C Hilgetag,et al.  Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. , 2001, Cerebral cortex.

[52]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[53]  Jonathan H. Venezia,et al.  Hierarchical organization of human auditory cortex: evidence from acoustic invariance in the response to intelligible speech. , 2010, Cerebral cortex.

[54]  ChrisD . Frith,et al.  Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia , 2009, Nature Reviews Neuroscience.

[55]  J Bullier,et al.  Developmental remodeling of primate visual cortical pathways. , 1995, Cerebral cortex.

[56]  J. Maunsell,et al.  Two‐dimensional maps of the cerebral cortex , 1980, The Journal of comparative neurology.

[57]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[58]  D. Purves,et al.  Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Tract , 1997, The Journal of Neuroscience.

[59]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[60]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[61]  D. Mumford,et al.  Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency , 2002, Nature Neuroscience.

[62]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[63]  Moo K. Chung,et al.  Cortical thickness analysis in autism with heat kernel smoothing , 2005, NeuroImage.

[64]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[65]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[66]  J. Rauschecker,et al.  Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing , 2009, Nature Neuroscience.

[67]  D. Pandya,et al.  Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern , 1973, Zeitschrift für Anatomie und Entwicklungsgeschichte.

[68]  M P Young,et al.  Indeterminate Organization of the Visual System , 1996, Science.

[69]  Peter Stiers,et al.  Mapping the hierarchical layout of the structural network of the macaque prefrontal cortex. , 2014, Cerebral cortex.

[70]  Marianna D. Eddy,et al.  Regionally localized thinning of the cerebral cortex in schizophrenia , 2003, Schizophrenia Research.

[71]  L. Triarhou The Economo-Koskinas Atlas Revisited: Cytoarchitectonics and Functional Context , 2007, Stereotactic and Functional Neurosurgery.

[72]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[73]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.