Domain Decomposition Methods in Feel

This paper presents our ongoing work on building a versatile domain decomposition methods framework in Feel++ that provides expressivity (e.g. closeness to the mathematical language) and efficiency. We display in particular the capabilities of Feel++ regarding Schwarz (non)overlapping and mortar methods. Some numerical tests and code snippets, taken from Feel++, support the explanations.

[1]  Yuri A. Kuznetsov,et al.  On a parallel implementation of the mortar element method , 1999 .

[2]  Alfio Quarteroni,et al.  High order methods for the approximation of the incompressible Navier–Stokes equations in a moving domain , 2012 .

[3]  Silvia Bertoluzza,et al.  Analysis of substructuring preconditioners for mortar methods in an abstract framework , 2007, Appl. Math. Lett..

[4]  Christophe Prud'homme Life: Overview of a Unified C++ Implementation of the Finite and Spectral Element Methods in 1D, 2D and 3D , 2006, PARA.

[5]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[6]  Yvon Maday,et al.  The mortar element method for three dimensional finite elements , 1997 .

[7]  Gonçalo Pena,et al.  Feel++ : A computational framework for Galerkin Methods and Advanced Numerical Methods , 2012 .

[8]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[9]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[10]  Christophe Geuzaine,et al.  GetDP: a general environment for the treatment of discrete problems , 1997 .

[11]  Gonçalo Pena,et al.  High-order fluid-structure interaction in 2D and 3D application to blood flow in arteries , 2013, J. Comput. Appl. Math..

[12]  Anders Logg,et al.  Efficient compilation of a class of variational forms , 2007, TOMS.

[13]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[14]  Christophe Prud'homme,et al.  Simulation of two-fluid flows using a finite element/level set method. Application to bubbles and vesicle dynamics , 2013, J. Comput. Appl. Math..

[15]  Silvia Bertoluzza,et al.  A PARALLEL IMPLEMENTATION OF THE MORTAR ELEMENT METHOD IN 2D AND 3D , 2013 .

[16]  Frédéric Nataf,et al.  High performance domain decomposition methods on massively parallel architectures with freefem++ , 2012, J. Num. Math..