Assembly of pili in Gram-positive bacteria.

[1]  Vincent A. Fischetti,et al.  Gram-positive pathogens , 2006 .

[2]  L. Marraffini,et al.  Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae , 2004, Molecular microbiology.

[3]  B. Barrell,et al.  The complete genome sequence and analysis of Corynebacterium diphtheriae NCTC13129. , 2003, Nucleic acids research.

[4]  O. Schneewind,et al.  Assembly of pili on the surface of Corynebacterium diphtheriae , 2003, Molecular microbiology.

[5]  S. Mazmanian,et al.  The role of Staphylococcus aureus sortase A and sortase B in murine arthritis. , 2003, Microbes and infection.

[6]  O. Schneewind,et al.  The YSIRK-G/S Motif of Staphylococcal Protein A and Its Role in Efficiency of Signal Peptide Processing , 2003, Journal of bacteriology.

[7]  A. Tomasz,et al.  Inactivation of the srtA Gene Affects Localization of Surface Proteins and Decreases Adhesion of Streptococcus pneumoniae to Human Pharyngeal Cells In Vitro , 2003, Infection and Immunity.

[8]  Eric P. Skaar,et al.  Passage of Heme-Iron Across the Envelope of Staphylococcus aureus , 2003, Science.

[9]  Song F Lee,et al.  Roles of Sortase in Surface Expression of the Major Protein Adhesin P1, Saliva-Induced Aggregation and Adherence, and Cariogenicity of Streptococcus mutans , 2003, Infection and Immunity.

[10]  A. Camilli,et al.  Transcriptional Regulation in the Streptococcus pneumoniae rlrA Pathogenicity Islet by RlrA , 2003, Journal of bacteriology.

[11]  H. Rakotoarivonina,et al.  Adhesion to cellulose of the Gram-positive bacterium Ruminococcus albus involves type IV pili. , 2002, Microbiology.

[12]  S. Mazmanian,et al.  On the role of Staphylococcus aureus sortase and sortase-catalyzed surface protein anchoring in murine septic arthritis. , 2002, The Journal of infectious diseases.

[13]  S. Mazmanian,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2002, The Journal of Biological Chemistry.

[14]  T. C. Barnett,et al.  Differential Recognition of Surface Proteins in Streptococcus pyogenes by Two Sortase Gene Homologs , 2002, Journal of bacteriology.

[15]  M. Siegel,et al.  Further Evidence that a Cell Wall Precursor [C55-MurNAc-(Peptide)-GlcNAc] Serves as an Acceptor in a Sorting Reaction , 2002, Journal of bacteriology.

[16]  S. Mazmanian,et al.  An iron-regulated sortase anchors a class of surface protein during Staphylococcus aureus pathogenesis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  P. Cossart,et al.  Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence , 2002, Molecular microbiology.

[18]  J. Novak,et al.  The Fap1 fimbrial adhesin is a glycoprotein: antibodies specific for the glycan moiety block the adhesion of Streptococcus parasanguis in an in vitro tooth model , 2002, Molecular microbiology.

[19]  N. Strömberg,et al.  Different Type 1 Fimbrial Genes and Tropisms of Commensal and Potentially Pathogenic Actinomyces spp. with Different Salivary Acidic Proline-Rich Protein and Statherin Ligand Specificities , 2001, Infection and Immunity.

[20]  P. Mosoni,et al.  Characterization of a spontaneous adhesion-defective mutant of Ruminococcus albus strain 20 , 2001, Archives of Microbiology.

[21]  S. Mazmanian,et al.  Sortase‐catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus , 2001, Molecular microbiology.

[22]  R. Clubb,et al.  Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Pallen,et al.  An embarrassment of sortases - a richness of substrates? , 2001, Trends in microbiology.

[24]  Kevin F. Jones,et al.  Inactivation of the srtA Gene inStreptococcus gordonii Inhibits Cell Wall Anchoring of Surface Proteins and Decreases In Vitro and In Vivo Adhesion , 2001, Infection and Immunity.

[25]  A. Mattos-Guaraldi,et al.  Cell surface components and adhesion in Corynebacterium diphtheriae. , 2000, Microbes and infection.

[26]  S. Mazmanian,et al.  Staphylococcus aureus sortase mutants defective in the display of surface proteins and in the pathogenesis of animal infections. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Miron,et al.  Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins? , 2000, FEMS microbiology letters.

[28]  S. Mazmanian,et al.  Anchoring of Surface Proteins to the Cell Wall of Staphylococcus aureus , 2000, The Journal of Biological Chemistry.

[29]  H. Ohara,et al.  Characterization of the Cellulolytic Complex (Cellulosome) from Ruminococcus albus , 2000, Bioscience, biotechnology, and biochemistry.

[30]  Hui Wu,et al.  Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae‐associated adhesin, Fap1, of Streptococcus parasanguis , 1999, Molecular microbiology.

[31]  S. Mazmanian,et al.  Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Beighton,et al.  The Predominant Actinomyces spp. Isolated from Infected Dentin of Active Root Caries Lesions , 1999, Journal of dental research.

[33]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1999, The Journal of Biological Chemistry.

[34]  S. Mazmanian,et al.  Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. , 1999, Science.

[35]  William Wiley Navarre,et al.  Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope , 1999, Microbiology and Molecular Biology Reviews.

[36]  Scott J. Hultgren,et al.  Bacterial Adhesins: Common Themes and Variations in Architecture and Assembly , 1999, Journal of bacteriology.

[37]  J. Hoober,et al.  Regulation of lipA Gene Expression by Cell Surface Proteins in Arthrobacter photogonimos , 1999, Current Microbiology.

[38]  T. Foster,et al.  Surface protein adhesins of Staphylococcus aureus. , 1998, Trends in microbiology.

[39]  M. Morrison,et al.  Adherence of the Gram-Positive BacteriumRuminococcus albus to Cellulose and Identification of a Novel Form of Cellulose-Binding Protein Which Belongs to the Pil Family of Proteins , 1998, Journal of bacteriology.

[40]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1998, The Journal of Biological Chemistry.

[41]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1998, The Journal of Biological Chemistry.

[42]  H. S. Yang,et al.  Molecular cloning of a light-inducible gene (lipA) encoding a novel pilin from Arthrobacter photogonimos. , 1998, FEMS microbiology letters.

[43]  Hui Wu,et al.  Isolation and characterization of Fap1, a fimbriae‐associated adhesin of Streptococcus parasanguis FW213 , 1998, Molecular microbiology.

[44]  J. A. Donkersloot,et al.  Identification of a Gene Involved in Assembly ofActinomyces naeslundii T14V Type 2 Fimbriae , 1998, Infection and Immunity.

[45]  O. Schneewind,et al.  Anchor Structure of Staphylococcal Surface Proteins , 1997, The Journal of Biological Chemistry.

[46]  M. K. Yeung,et al.  Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes , 1997, Infection and immunity.

[47]  J. A. Donkersloot,et al.  Specific Inhibitors of Bacterial Adhesion: Observations From the Study of Gram-Positive Bacteria that Initiate Biofilm Formation on the Tooth Surface , 1997, Advances in dental research.

[48]  R. Taylor,et al.  Toxin-coregulated pilus, but not mannose-sensitive hemagglutinin, is required for colonization by Vibrio cholerae O1 El Tor biotype and O139 strains , 1996, Infection and immunity.

[49]  John F. Kennedy,et al.  Bacterial cell wall , 1996 .

[50]  M. Brennan,et al.  Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin , 1995, Infection and immunity.

[51]  O. Schneewind,et al.  Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. , 1995, Science.

[52]  O. Schneewind,et al.  Proteolytic cleavage and cell wall anchoring at the LPXTG motif of surface proteins in Gram‐positive bacteria , 1994, Molecular microbiology.

[53]  P. Model,et al.  Cell wall sorting signals in surface proteins of gram‐positive bacteria. , 1993, The EMBO journal.

[54]  P. Fives-Taylor,et al.  Overexpression and purification of a fimbria-associated adhesin of Streptococcus parasanguis , 1993, Infection and immunity.

[55]  Vincent A. Fischetti,et al.  Sorting of protein a to the staphylococcal cell wall , 1992, Cell.

[56]  K. Leung,et al.  Isolation and Characterization of Actinomyces viscosus Mutants Defective in Binding Salivary Proline-Rich Proteins , 2022 .

[57]  M. Levine,et al.  Pellicle receptors for Actinomyces viscosus type 1 fimbriae in vitro , 1989, Infection and immunity.

[58]  J. Cisar,et al.  Mutants of Actinomyces viscosus T14V lacking type 1, type 2, or both types of fimbriae , 1988, Infection and immunity.

[59]  J. Cisar,et al.  Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces , 1988, Infection and immunity.

[60]  J. Cisar,et al.  Cloning and nucleotide sequence of a gene for Actinomyces naeslundii WVU45 type 2 fimbriae , 1988, Journal of bacteriology.

[61]  M. Brennan,et al.  A 160-kilodalton epithelial cell surface glycoprotein recognized by plant lectins that inhibit the adherence of Actinomyces naeslundii , 1986, Infection and immunity.

[62]  J. A. Donkersloot,et al.  Expression of Actinomyces viscosus antigens in Escherichia coli: cloning of a structural gene (fimA) for type 2 fimbriae , 1985, Journal of bacteriology.

[63]  P. Handley,et al.  Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera , 1985, Infection and immunity.

[64]  M. Brennan,et al.  Lectin-dependent attachment of Actinomyces naeslundii to receptors on epithelial cells , 1984, Infection and immunity.

[65]  P. Handley,et al.  Streptococcus salivarius strains carry either fibrils or fimbriae on the cell surface , 1984, Journal of bacteriology.

[66]  M. Pichichero,et al.  DO PILI PLAY A ROLE IN PATHOGENICITY OF HAEMOPHILUS INFLUENZAE TYPE B? , 1982, The Lancet.

[67]  P. Handley,et al.  Some structural and physiological properties of fimbriae of Streptococcus faecalis. , 1981, Journal of general microbiology.

[68]  P. Kolenbrander,et al.  Neuraminidase-dependent hamagglutination of human erythrocytes by human strains of Actinomyces viscosus and Actinomyces naeslundii , 1979, Infection and immunity.

[69]  J. Cisar,et al.  Surface fibrils (fimbriae) of Actinomyces viscosus T14V , 1979, Infection and immunity.

[70]  J. Hoober Kinetics of accumulation of a photodynamically induced cell-surface polypeptide in a species of Arthrobacter , 1978, Journal of bacteriology.

[71]  E. Honda,et al.  Presence of pili in species of human and animal parasites and pathogens of the genuscorynebacterium , 1976, Infection and immunity.

[72]  B. Williams,et al.  Subgingival microflora and periodontitis. , 1976, Journal of periodontal research.

[73]  K. Schleifer,et al.  Peptidoglycan types of bacterial cell walls and their taxonomic implications , 1972, Bacteriological reviews.

[74]  J. Sjöquist,et al.  Localization of protein A in the bacteria. , 1972, European journal of biochemistry.

[75]  B. Meloun,et al.  Protein A isolated from Staphylococcus aureus after digestion with lysostaphin. , 1972, European journal of biochemistry.

[76]  Hui Wu,et al.  Molecular strategies for fimbrial expression and assembly. , 2001, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[77]  A. Merz,et al.  Interactions of pathogenic neisseriae with epithelial cell membranes. , 2000, Annual review of cell and developmental biology.

[78]  L. A. Fernández,et al.  Secretion and assembly of regular surface structures in Gram-negative bacteria. , 2000, FEMS microbiology reviews.

[79]  M. K. Yeung Molecular and genetic analyses of Actinomyces spp. , 1999, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[80]  M. Matsuhashi Chapter 4 Utilization of lipid-linked precursors and the formation of peptidoglycan in the process of cell growth and division: membrane enzymes involved in the final steps of peptidoglycan synthesis and the mechanism of their regulation , 1994 .

[81]  L. Ljungdahl,et al.  The cellulosome: the exocellular organelle of Clostridium. , 1993, Annual review of microbiology.

[82]  S. Lory,et al.  Components of the protein-excretion apparatus of Pseudomonas aeruginosa are processed by the type IV prepilin peptidase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[83]  P. Kolenbrander Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. , 1988, Annual review of microbiology.