FAULT-TOLERANT NANOCOMPUTERS BASED ON ASYNCHRONOUS CELLULAR AUTOMATA
暂无分享,去创建一个
Jia Lee | Teijiro Isokawa | Ferdinand Peper | Ferdinand Peper | Nobuyuki Matsui | Fukutaro Abo | Susumu Adachi | Shinro Mashiko | T. Isokawa | N. Matsui | F. Peper | Jia Lee | S. Adachi | S. Mashiko | F. Abo | Susumu Adachi
[1] Claude E. Shannon,et al. The Mathematical Theory of Communication , 1950 .
[2] Claude E. Shannon,et al. A mathematical theory of communication , 1948, MOCO.
[3] Gregory S. Snider,et al. A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .
[4] T. Isokawa,et al. Fault-tolerance in nanocomputers: a cellular array approach , 2004, IEEE Transactions on Nanotechnology.
[5] Charles M. Lieber,et al. Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.
[6] Tommaso Toffoli. Integration of the Phase-Difference Relations in Asynchronous Sequential Networks , 1978, ICALP.
[7] Ferdinand Peper,et al. Embedding Universal Delay-Insensitive Circuits in Asynchronous Cellular Spaces , 2003, Fundam. Informaticae.
[8] Hidenosuke Nishio,et al. Fault Tolerant Cellular Spaces , 1975, J. Comput. Syst. Sci..
[9] Lutz Priese,et al. Petri Net Implementations by a Universal Cell Space , 1982, Inf. Control..
[10] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[11] F. Peper,et al. Laying out circuits on asynchronous cellular arrays: a step towards feasible nanocomputers? , 2003 .
[12] Shoichi Noguchi,et al. Fault Tolerant Cellular Automata , 1975, J. Comput. Syst. Sci..
[13] F. Peper,et al. Asynchronous game of life , 2004 .
[14] Charles M. Lieber,et al. Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.
[15] M. Biafore. Cellular automata for nanometer-scale computation , 1994 .
[16] Stoddart,et al. Electronically configurable molecular-based logic gates , 1999, Science.
[17] J. von Neumann,et al. Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components , 1956 .
[18] A. S. Sadek,et al. Fault-tolerant techniques for nanocomputers , 2002 .
[19] M. Reed,et al. Molecular random access memory cell , 2001 .
[20] Péter Gács,et al. A Simple Three-Dimensional Real-Time Reliable Cellular Array , 1988, J. Comput. Syst. Sci..
[21] Charles M. Lieber,et al. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.
[22] Ferdinand Peper,et al. Reversible Computation in Asynchronous Cellular Automata , 2002, UMC.
[23] Nobuyuki Matsui,et al. Self-Timed Cellular Automata and their computational ability , 2002, Future Gener. Comput. Syst..
[24] C. Dekker,et al. Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.
[25] L. Durbeck,et al. The Cell Matrix: an architecture for nanocomputing , 2001 .
[26] C. Dekker,et al. Logic Circuits with Carbon Nanotube Transistors , 2001, Science.
[27] Kenichi Morita,et al. A Simple Universal Logic Element and Cellular Automata for Reversible Computing , 2001, MCU.
[28] F. Peper,et al. Computation by Asynchronously Updating Cellular Automata , 2004 .
[29] P. Jonker,et al. A defect-?and fault-tolerant architecture for nanocomputers , 2003 .
[30] Péter Gács,et al. Reliable computation with cellular automata , 1983, J. Comput. Syst. Sci..
[31] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[32] L. Priese,et al. A Combinatorial Approach to Self-Correction , 1974 .
[33] Dwijendra K. Ray-Chaudhuri,et al. Further Results on Error Correcting Binary Group Codes , 1960, Inf. Control..
[34] Dwijendra K. Ray-Chaudhuri,et al. Binary mixture flow with free energy lattice Boltzmann methods , 2022, arXiv.org.
[35] Nicholas Pippenger. Invariance of complexity measures for networks with unreliable gates , 1989, JACM.
[36] LUTZ PRIESE,et al. A Note on Asynchronous Cellular Automata , 1978, J. Comput. Syst. Sci..