Generalized likelihood ratio statistics and Wilks phenomenon

Likelihood ratio theory has had tremendous success in parametric inference, due to the fundamental theory of Wilks. Yet, there is no general applicable approach for nonparametric inferences based on function estimation. Maximum likelihood ratio test statistics in general may not exist in nonparametric function estimation setting. Even if they exist, they are hard to find and can not; be optimal as shown in this paper. We introduce the generalized likelihood statistics to overcome the drawbacks of nonparametric maximum likelihood ratio statistics. A new S Wilks phenomenon is unveiled. We demonstrate that a class of the generalized likelihood statistics based on some appropriate nonparametric estimators are asymptotically distribution free and follow chi (2)-distributions under null hypotheses for a number of useful hypotheses and a variety of useful models including Gaussian white noise models, nonparametric regression models, varying coefficient models and generalized varying coefficient models. We further demonstrate that generalized likelihood ratio statistics are asymptotically optimal in the sense that they achieve optimal rates of convergence given by Ingster. They can even be adaptively optimal in the sense of Spokoiny by using a simple choice of adaptive smoothing parameter. Our work indicates that the generalized likelihood ratio statistics are indeed general and powerful for nonparametric testing problems based on function estimation.

[1]  J. Neyman »Smooth test» for goodness of fit , 1937 .

[2]  S. S. Wilks The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses , 1938 .

[3]  P. Bickel,et al.  On Some Global Measures of the Deviations of Density Function Estimates , 1973 .

[4]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[5]  Douglas A. Wolfe,et al.  Introduction to the Theory of Nonparametric Statistics. , 1980 .

[6]  R. Randles,et al.  Introduction to the Theory of Nonparametric Statistics , 1991 .

[7]  B. Silverman,et al.  Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .

[8]  Peter F. de Jong,et al.  A central limit theorem for generalized quadratic forms , 1987 .

[9]  S. Portnoy Asymptotic Behavior of Likelihood Methods for Exponential Families when the Number of Parameters Tends to Infinity , 1988 .

[10]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[11]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[12]  Adrian Bowman,et al.  On the use of nonparametric regression for model checking , 1989 .

[13]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[14]  W. Wong,et al.  Profile Likelihood and Conditionally Parametric Models , 1992 .

[15]  V. LaRiccia,et al.  Asymptotic Comparison of Cramer-von Mises and Nonparametric Function Estimation Techniques for Testing Goodness-of-Fit , 1992 .

[16]  R. L. Eubank,et al.  Testing Goodness-of-Fit in Regression Via Order Selection Criteria , 1992 .

[17]  Susan A. Murphy,et al.  Testing for a Time Dependent Coefficient in Cox's Regression Model , 1993 .

[18]  E. Mammen,et al.  Comparing Nonparametric Versus Parametric Regression Fits , 1993 .

[19]  Adrian Bowman,et al.  On the Use of Nonparametric Regression for Checking Linear Relationships , 1993 .

[20]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[21]  Art B. Owen,et al.  Empirical Likelihood Confidence Bands in Density Estimation , 1993 .

[22]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[23]  Jiahua Chen,et al.  Empirical likelihood estimation for ?nite populations and the e?ective usage of auxiliary informatio , 1993 .

[24]  P. Janssen,et al.  Theory of U-statistics , 1994 .

[25]  Wilbert C.M. Kallenberg,et al.  Power approximations to and power comparison of smooth goodness-of-fit tests , 1994 .

[26]  Wilbert C.M. Kallenberg,et al.  Data-Driven Smooth Tests When the Hypothesis is Composite , 1997 .

[27]  Jianqing Fan Test of Significance Based on Wavelet Thresholding and Neyman's Truncation , 1996 .

[28]  L. Brown,et al.  Asymptotic equivalence of nonparametric regression and white noise , 1996 .

[29]  J. Hart,et al.  Smoothing-based lack-of-fit tests: variations on a theme , 1996 .

[30]  V. Spokoiny Adaptive hypothesis testing using wavelets , 1996 .

[31]  Myles Hollander,et al.  Nonparametric likelihood ratio confidence bands for quantile functions from incomplete survival data , 1996 .

[32]  Tadeusz Inglot,et al.  Asymptotic optimality of data-driven Neyman's tests for uniformity , 1996 .

[33]  M. Nussbaum Asymptotic Equivalence of Density Estimation and Gaussian White Noise , 1996 .

[34]  Jeffrey D. Hart,et al.  Nonparametric Smoothing and Lack-Of-Fit Tests , 1997 .

[35]  Jianqing Fan,et al.  Generalized Partially Linear Single-Index Models , 1997 .

[36]  H. Müller,et al.  Local Polynomial Modeling and Its Applications , 1998 .

[37]  Xiaotong Shen,et al.  Random Sieve Likelihood and General Regression Models , 1999 .

[38]  V. Spokoiny,et al.  Minimax Nonparametric Hypothesis Testing: The Case of an Inhomogeneous Alternative , 1999 .

[39]  G. Claeskens,et al.  Testing the Fit of a Parametric Function , 1999 .

[40]  Jianqing Fan,et al.  Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .

[41]  Jianqing Fan,et al.  Sieve empirical likelihood ratio tests for nonparametric functions , 2004, math/0503667.

[42]  Jianqing Fan,et al.  Goodness-of-Fit Tests for Parametric Regression Models , 2001 .