Background MRI-guided Electrophysiology (EP) procedures integrate real-time MRI images with catheter position during Radiofrequency Ablation (RFA) of arrhythmias [1]. Using simultaneous MR catheter tracking and imaging [2], this technology can both guide catheter manipulation and provide dynamic assessment of lesion efficacy [3]. Despite advances in MRI-guided EP, maneuvering catheters to the desired location and ensuring appropriate tissue contact is still challenging inside an MRI due to two issues: (1) inconsistent catheter-tissue contact force (CTCF); and (2) visual-motor disorientation arising from differences between manipulation of the catheter’s proximal controlling handle and visualization of the catheter-tissue interface. Both issues can increase the risk of cardiac perforation during catheter manipulation. We hypothesized that a technique based on MR imaging to generate force and vibrotactile alarms, as well as the presentation of a reproducible endoscopic view to the catheter operator, could facilitate precise application of RF energy, thereby increasing efficacy and reducing complications.