Organic Materials for Non‐Linear Optics: The 2D Approach

Conventional organic molecules for applications in second-order non-linear optics are donor–acceptor substituted π systems that show only one intense charge-transfer (CT) transition. Thus, only a single element of the second-order polarizability tensor, β, is significant in these one-dimensional systems. The advantages and optimization strategies for two new classes of molecules with multiple CT transitions and two-dimensional second-order polarizability are reviewed. These are donor–acceptor substituted π systems that lack a dipole and have a molecular symmetry of C3 or higher, and dipolar molecules of symmetry C2v. A basic introduction to the field is also given.

[1]  S. J. Cyvin,et al.  Theory of Hyper-Raman Effects (Nonlinear Inelastic Light Scattering): Selection Rules and Depolarization Ratios for the Second-Order Polarizability , 1965 .

[2]  Mark A. Ratner,et al.  Design, Synthesis, and Properties of Molecule‐Based Assemblies with Large Second‐Order Optical Nonlinearities , 1995 .

[3]  P. N. Butcher,et al.  The Elements of Nonlinear Optics , 1990 .

[4]  J. Dunitz,et al.  Towards a Grammar of Crystal Packing , 1994 .

[5]  C. Bräuchle,et al.  Long-wavelength first hyperpolarizability measurements by hyper-Rayleigh scattering. , 1996, Optics letters.

[6]  M. C. Flipse,et al.  The determination of first hyperpolarizabilities β using hyper-Rayleigh scattering : a caveat , 1995 .

[7]  J. Chandrasekhar,et al.  NDDO-based CI methods for the prediction of electronic spectra and sum-over-states molecular hyperpolarization , 1993 .

[8]  Seth R. Marder,et al.  Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives , 1991 .

[9]  Nicholas J. Long Metallorganische Verbindungen für die nichtlineare Optik – ein Hoffnungsstreif am Horizont , 1995 .

[10]  Joseph Zyss,et al.  Nonlinear optical properties of organic molecules and crystals , 1987 .

[11]  David P. Shelton,et al.  Problems in the comparison of theoretical and experimental hyperpolarizabilities , 1992 .

[12]  David J. Williams,et al.  New sulfonyl-containing materials for nonlinear optics: semiempirical calculations, synthesis, and properties , 1990 .

[13]  Walter Grahn,et al.  Novel, Blue‐Transparent Frequency Doublers Based on 1,8‐Di(hetero)arylnaphthalenes , 1995 .

[14]  Giuseppe Filippini,et al.  Computer Prediction of Organic Crystal Structures Using Partial X-ray Diffraction Data , 1996 .

[15]  C. Bräuchle,et al.  Polarized π‐Electron Systems in a Chemically Generated Electric Field: Second‐Order Nonlinear Optical Properties of Ammonium/Borate Zwitterions , 1996 .

[16]  G. Heilmeier The Dielectric and Electrooptical Properties of a Molecular Crystal–Hexamine , 1964 .

[17]  J. Zyss,et al.  Second-harmonic generation from non-dipolar non-centrosymmetric aromatic charge-transfer molecules , 1990 .

[18]  Yoh-Han Pao,et al.  Double‐Quantum Light Scattering by Molecules , 1966 .

[19]  K. Clays,et al.  Novel Chiral Bis-dipolar 6,6‘-Disubstituted Binaphthol Derivatives for Second-Order Nonlinear Optics: Synthesis and Linear and Nonlinear Optical Properties , 1996 .

[20]  Joseph Zyss,et al.  Chiral metal complexes with large octupolar optical nonlinearities , 1995, Nature.

[21]  Seth R. Marder,et al.  A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes , 1994, Science.

[22]  S. K. Kurtz,et al.  A Powder Technique for the Evaluation of Nonlinear Optical Materials , 1968 .

[23]  Peter Krämer,et al.  Dipolar NLO‐phores with large off‐diagonal components of the second‐order polarizability tensor , 1997 .

[24]  David J. Williams,et al.  New chromophores containing sulfonamide, sulfonate, or sulfoximide groups for second harmonic generation , 1993 .

[25]  David P. Shelton,et al.  POLARIZED HYPER-RAYLEIGH LIGHT SCATTERING MEASUREMENTS OF NONLINEAR OPTICAL CHROMOPHORES , 1996 .

[26]  B. F. Levine,et al.  Donor—acceptor charge transfer contributions to the second order hyperpolarizability , 1976 .

[27]  Paul A. Fleitz,et al.  Nonlinear Optics of Organic Molecules and Polymers , 1997 .

[28]  C. Lambert,et al.  Polarisierte π‐Elektronensysteme in einem chemisch erzeugten elektrischen Feld: nichtlineare optische Eigenschaften zweiter Ordnung von Ammonium‐Borat‐Zwitterionen , 1996 .

[29]  J. Brédas Conjugated polymers and oligomers: Designing novel materials using a quantum‐chemical approach , 1995 .

[30]  C. Bräuchle,et al.  Determination of the First Hyperpolarizabilities of Octupolar Molecular Ions Made from Symmetric Cyanine Dyes , 1996 .

[31]  J. Zyss,et al.  Light-induced second-harmonic generation in an octupolar dye. , 1995, Optics Letters.

[32]  Peter Krämer,et al.  Deviations from Kleinman symmetry of the second-order polarizability tensor in molecules with low-lying perpendicular electronic bands , 1993 .

[33]  P. Maker Spectral Broadening of Elastic Second-Harmonic Light Scattering in Liquids , 1970 .

[34]  M. Pierce-Butler Structures of 2,4,6-trinitro-1.3-benzenediol 2/3-hydrate and 2,4,6-trinitro-1,3,5-benzenetriol 2/3-hydrate , 1982 .

[35]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[36]  J. Wolff,et al.  The Origin of Nonlinear Optical Activity of 1,3,5-Triamino-2,4,6-trinitrobenzene in the Solid State: The Crystal Structure of a Non-Centrosymmetric Polymorph as Determined by Electron Diffraction , 1996 .

[37]  R. W. Terhune,et al.  Measurements of Nonlinear Light Scattering , 1965 .

[38]  Joseph Zyss,et al.  Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials , 1993 .

[39]  Julia E. Rice,et al.  Solvent dependence of the second order hyperpolarizability in p-nitroaniline , 1992 .

[40]  Joseph Zyss,et al.  On the second-order polarizability of conjugated .pi.-electron molecules with octupolar symmetry: the case of triaminotrinitrobenzene , 1992 .

[41]  R. Gleiter,et al.  Donor‐Acceptor Spiro‐Compounds — Syntheses, Structures, and Electronic Properties , 1994 .

[42]  I. Cabrera,et al.  A new class of planar‐locked polyene dyes for nonlinear optics , 1994 .

[43]  Gautam R. Desiraju Supramolekulare Synthone für das Kristall‐Engineering ‐ eine neue organische Synthese , 1995 .

[44]  P. Gregory,et al.  Organic Chemistry in Colour , 1983 .

[45]  B. F. Levine,et al.  Second and third order hyperpolarizabilities of organic molecules , 1975 .

[46]  Nam Woong Song,et al.  Improved method for measuring the first-order hyperpolarizability of organic NLO materials in solution by using the hyper-Rayleigh scattering technique , 1996 .

[47]  Joseph Zyss,et al.  Second order optical nonlinearity in octupolar aromatic systems , 1992 .

[48]  N. Veldman,et al.  Bimetallic Sesquifulvalene Complexes–Compounds with Unusually Large Hyperpolarizability β , 1996 .

[49]  Joseph Zyss,et al.  Subphthalocyanines: Novel Targets for Remarkable Second-Order Optical Nonlinearities , 1996 .

[50]  L. Addadi,et al.  Control of polymorphism by ‘tailor‐made’ polymeric crystallization auxiliaries. Preferential precipitation of a metastable polar form for second harmonic generation , 1990 .

[51]  J. Wolff,et al.  Use of Electron Diffraction and High-Resolution Imaging To Explain Why the Non-dipolar 1,3,5-Triamino-2,4,6-trinitrobenzene Displays Strong Powder Second Harmonic Generation Efficiency , 1997 .

[52]  Achim Müller,et al.  SUPRAMOLECULAR INORGANIC CHEMISTRY : SMALL GUESTS IN SMALL AND LARGE HOSTS , 1995 .

[53]  A. Persoons,et al.  Organometallic complexes for nonlinear optics. 14. Syntheses and second-order nonlinear optical properties of ruthenium, nickel and gold σ-acetylides of 1,3,5-triethynylbenzene: X-ray crystal structures of 1-(HC≡C)-3,5-C6H3(trans-C≡CRuCl(dppm)2)2 and 1,3,5-C6H3(C≡CAu(PPh3))3 , 1997 .

[54]  R. W. McQuaid The Pockels Effect of Hexamethylenetetramine , 1963 .

[55]  T. J. Marks,et al.  Entwurf, Synthese und Eigenschaften von Molekülaggregaten mit ausgeprägten nichtlinearen optischen Eigenschaften zweiter Ordnung , 1995 .

[56]  Persoons,et al.  Hyper-Rayleigh scattering in solution. , 1991, Physical review letters.

[57]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .

[58]  Christopher R. Moylan,et al.  Optical Properties of Spiroconjugated Charge-Transfer Dyes , 1996 .

[59]  Koen Clays,et al.  Second-order nonlinear optical materials: recent advances in chromophore design , 1997 .

[60]  Seth R. Marder,et al.  Large Quadratic Hyperpolarizabilities with Donor–Acceptor Polyenes Exhibiting Optimum Bond Length Alternation: Correlation Between Structure and Hyperpolarizability , 1997 .

[61]  P. Günter,et al.  Non‐classical donor–acceptor chromophores for second order nonlinear optics , 1996 .

[62]  Martti Kauranen,et al.  Direct evidence of the failure of electric-dipole approximation in second-harmonic generation from a chiral polymer film , 1997 .

[63]  Seizo Miyata,et al.  2‐D. charge‐transfer molecules for second order nlo: off‐diagonal orientation , 1995 .

[64]  P. Das,et al.  First-order hyperpolarizabilities of octupolar aromatic molecules: symmetrically substituted triazines , 1995 .

[65]  P. Rechsteiner,et al.  The crystallization of polar, channel‐type inclusion compounds: Property‐directed superamolecular synthesis , 1997 .

[66]  J. Zyss,et al.  Harmonic rayleigh scattering from nonlinear octupolar molecular media: the case of crystal violet , 1993 .

[67]  J. Wolff,et al.  Structures of tris(donor)-tris(acceptor)-substituted benzenes, 5. Organization and reorganization of the π system in a symmetric tris(alkylamino)trinitrobenzene: balance between cyanine and quinoid structures† , 1993 .

[68]  David J. Williams Organische polymere und nichtpolymere Materialien mit guten nichtlinearen optischen Eigenschaften , 1984 .

[69]  J. Oudar,et al.  Origin of the second-order optical susceptibilities of crystalline substituted benzene , 1975 .

[70]  A. Persoons,et al.  Organometallic Complexes for Nonlinear Optics. 8.1 Syntheses and Molecular Quadratic Hyperpolarizabilities of Systematically Varied (Triphenylphosphine)gold σ-Arylacetylides: X-ray Crystal Structures of Au(C⋮CR)(PPh3) (R = 4-C6H4NO2, 4,4‘-C6H4C6H4NO2) , 1996 .

[71]  Kenneth D. Singer,et al.  Polymers for second-order nonlinear optics , 1995 .

[72]  Grant Bourhill,et al.  Problems Associated with Hyper-Rayleigh Scattering as a Means To Determine the Second-Order Polarizability of Organic Chromophores , 1996 .

[73]  R. McMahon,et al.  Nitrogen and Oxygen Donors in Nonlinear Optical Materials: Effects of Alkyl vs Phenyl Substitution on the Molecular Hyperpolarizability , 1996 .

[74]  S. Karna,et al.  Frequency-dependent hyperpolarizabilities of haloforms from ab initio SCF calculations , 1990 .

[75]  David J. Williams,et al.  Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities , 1984 .

[76]  P. Günter Materials for nonlinear optics , 1985 .

[77]  W. Baumann Meßmethoden bei elektrooptischen Untersuchungen , 1976 .

[78]  J. Wolff Crystal Packing and Molecular Geometry , 1996 .

[79]  C. Bräuchle,et al.  Determination of the first hyperpolarizability of four octupolar molecules and their dipolar subunits via hyper-Rayleigh scattering in solution , 1995 .

[80]  R. G. Denning,et al.  Measurement of first hyperpolarizabilities by hyper‐Rayleigh scattering , 1996 .

[81]  O.F.J. Noordman,et al.  Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules , 1996 .

[82]  A. C. Larson,et al.  The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene , 1965 .

[83]  E. Barbu,et al.  Nondipolar Structures With Threefold Symmetry For Nonlinear Optics , 1997 .

[84]  Z. Arnold Note on the formylation of chloro- and bromoacetic acid , 1965 .

[85]  E. Chauchard,et al.  Large second-order optical polarizabilities in mixed-valency metal complexes , 1993, Nature.

[86]  C. Bethea,et al.  Effects on hyperpolarizabilities of molecular interactions in associating liquid mixtures , 1976 .

[87]  T. Takada,et al.  Molecular hyperpolarizability components βzzz and βzxx under directional extensions of π conjugation: missing-orbital analysis and simplified sum-over-states calculations , 1997 .

[88]  G. Wagnière Linear and nonlinear optical properties of molecules , 1993 .

[89]  R. Fèvre,et al.  Molecular Refractivity and Polarizability , 1965 .

[90]  Thierry Verbiest,et al.  Second-order nonlinearity in mixed-valence metal chromophores , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[91]  Koen Clays,et al.  INVESTIGATIONS OF THE HYPERPOLARIZABILITY IN ORGANIC MOLECULES FROM DIPOLAR TO OCTOPOLAR SYSTEMS , 1994 .

[92]  Heesink,et al.  Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering. , 1993, Physical review letters.

[93]  R. Twieg,et al.  (DICYANOMETHYLENE)PYRAN DERIVATIVES WITH C2V SYMMETRY : AN UNUSUAL CLASS OF NONLINEAR OPTICAL CHROMOPHORES , 1996 .

[94]  J. Simon,et al.  First hyperpolarizability of organotin compounds with Td symmetry , 1994 .

[95]  Seth R. Marder,et al.  Materials for Nonlinear Optics Chemical Perspectives , 1991 .

[96]  Peter Krämer,et al.  Enhanced nonlinear optical properties and thermal stability of donor-acceptor substituted oligothiophenes , 1997 .

[97]  J. Wolff Kristallpackung und Molekülgestalt , 1996 .

[98]  P. G. Jones,et al.  Neuartige blautransparente Frequenzverdoppler auf der Basis von 1,8-Di(hetero)aryl-naphthalinen† , 1995 .