On Weak-Space Complexity over Complex Numbers

Defining a feasible notion of space over the Blum-Shub-Smale (BSS) model of algebraic computation is a long standing open problem. In an attempt to define a right notion of space complexity for the BSS model, Naurois [CiE 2007] introduced the notion of weak-space. We investigate the weak-space bounded computations and their plausible relationship with the classical space bounded computations. For weak-space bounded, division-free computations over BSS machines over complex numbers with \(\mathop {=}\limits ^{?}0\) tests, we show the following:

[1]  Felipe Cucker,et al.  Pr != Ncr , 1992, Journal of Complexity.

[2]  Pascal Koiran,et al.  Are Lower Bounds Easier over theReals ? , 1998 .

[3]  Amir Yehudayoff,et al.  Arithmetic Circuits: A survey of recent results and open questions , 2010, Found. Trends Theor. Comput. Sci..

[4]  Shuhong Gao Absolute Irreducibility of Polynomials via Newton Polytopes , 2001 .

[5]  A. Ostrowski On multiplication and factorization of polynomials, I. Lexicographic orderings and extreme aggregates of terms , 1975 .

[6]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[7]  Peter Bro Miltersen,et al.  2 The Task of a Numerical Analyst , 2022 .

[8]  Pascal Koiran Elimination of Constants from Machines over Algebraically Closed Fields , 1997, J. Complex..

[9]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[10]  Pascal Koiran,et al.  VPSPACE and a transfer theorem over the complex field , 2009, Theor. Comput. Sci..

[11]  Stéphan Thomassé,et al.  A tau-conjecture for Newton polygons , 2013, ArXiv.

[12]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[13]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[14]  Pascal Koiran Computing over the Reals with Addition and Order , 1994, Theor. Comput. Sci..

[15]  Avi Wigderson,et al.  Proof Complexity Lower Bounds from Algebraic Circuit Complexity , 2016, Electron. Colloquium Comput. Complex..

[16]  G. Ziegler Lectures on Polytopes , 1994 .

[17]  Patrick J. Morandi Field and Galois theory , 1996 .

[18]  Dima Grigoriev,et al.  On the Power of Real Turing Machines Over Binary Inputs , 1997, SIAM J. Comput..

[19]  Pascal Koiran A weak version of the Blum, Shub and Smale model , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[20]  Meena Mahajan,et al.  Small Space Analogues of Valiant’s Classes and the Limitations of Skew Formulas , 2011, computational complexity.

[21]  Paulin Jacobé de Naurois A Measure of Space for Computing over the Reals , 2006, CiE.

[22]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[23]  C. Michaux,et al.  A survey on real structural complexity theory , 1997 .

[24]  Pascal Koiran,et al.  VPSPACE and a Transfer Theorem over the Reals , 2009, computational complexity.