A 5 μW/channel 9b-ENOB BioADC array for electrocortical recording

We present a 4-channel integrated biopotential analog-to-digital converter (bioADC) for electrocortical recording in 180nm CMOS. The bioADC directly transduces microvolt biopotentials into a digital representation without a voltage-amplification stage. Each channel comprises a continuous-time first-order ΔΣ modulator with OTA input and current feedback, followed by a second-order comb-filter decimator. Powered from a 1.5V supply, the analog and digital circuits in each channel draw 2.1uA and 1.4uA of supply current, respectively. The bioADCs achieve an SNR of 57dB and a SFDR or 63.5dB, for 9-b ENOB. Intracranial EEG recordings from an anesthetized rat are shown and compared to simultaneous recordings from a commercial reference system to validate performance in-vivo. The micropower operation and direct digital readout make this circuit ideally suited for closed-loop neuromodulation applications.

[1]  Tobi Delbrück,et al.  32-bit Configurable bias current generator with sub-off-current capability , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[2]  R. Schreier,et al.  Delta-sigma modulators employing continuous-time circuitry , 1996 .

[3]  Ralph Etienne-Cummings,et al.  A closed-loop compressive-sensing-based neural recording system , 2015, Journal of neural engineering.

[4]  Gert Cauwenberghs,et al.  Micropower integrated bioamplifier and auto-ranging ADC for wireless and implantable medical instrumentation , 2010, 2010 Proceedings of ESSCIRC.

[5]  Anantha Chandrakasan,et al.  An 8-Channel Scalable EEG Acquisition SoC With Patient-Specific Seizure Classification and Recording Processor , 2013, IEEE Journal of Solid-State Circuits.

[6]  P. House Responsive cortical stimulation for the treatment of medically intractable partial epilepsy , 2012 .

[7]  F. O. Eynde,et al.  A high-speed CMOS comparator with 8-b resolution , 1992 .

[8]  Jan M. Rabaey,et al.  A 0.013mm2 5μW DC-coupled neural signal acquisition IC with 0.5V supply , 2011, 2011 IEEE International Solid-State Circuits Conference.

[9]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[10]  Mohsen Mollazadeh,et al.  Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[11]  Felice Sun,et al.  Building a bionic nervous system , 2015, IEEE Spectrum.

[12]  Refet Firat Yazicioglu,et al.  A 200 $\mu$ W Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems , 2008, IEEE Journal of Solid-State Circuits.

[13]  A.-T. Avestruz,et al.  A 5 $\mu$ W/Channel Spectral Analysis IC for Chronic Bidirectional Brain–Machine Interfaces , 2008, IEEE Journal of Solid-State Circuits.

[14]  S. Haber,et al.  Closed-Loop Deep Brain Stimulation Is Superior in Ameliorating Parkinsonism , 2011, Neuron.

[15]  Fan Zhang,et al.  A Batteryless 19 $\mu$W MICS/ISM-Band Energy Harvesting Body Sensor Node SoC for ExG Applications , 2013, IEEE Journal of Solid-State Circuits.

[16]  Robert G. Meyer,et al.  Analysis and Design of Analog Integrated Circuits , 1993 .

[17]  Karim Abdelhalim,et al.  64-Channel UWB Wireless Neural Vector Analyzer SOC With a Closed-Loop Phase Synchrony-Triggered Neurostimulator , 2013, IEEE Journal of Solid-State Circuits.

[18]  Teresa H. Y. Meng,et al.  HermesE: A 96-Channel Full Data Rate Direct Neural Interface in 0.13 $\mu$ m CMOS , 2012, IEEE Journal of Solid-State Circuits.

[19]  Gabor C. Temes,et al.  Understanding Delta-Sigma Data Converters , 2004 .

[20]  Gert Cauwenberghs,et al.  A CMOS neurostimulator with on-chip DAC calibration and charge balancing , 2013, 2013 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[21]  Jan M. Rabaey,et al.  A Minimally Invasive 64-Channel Wireless μECoG Implant , 2015, IEEE Journal of Solid-State Circuits.