Prokaryotic toxin–antitoxin stress response loci

Although toxin–antitoxin gene cassettes were first found in plasmids, recent database mining has shown that these loci are abundant in free-living prokaryotes, including many pathogenic bacteria. For example, Mycobacterium tuberculosis has 38 chromosomal toxin–antitoxin loci, including 3 relBE and 9 mazEF loci. RelE and MazF are toxins that cleave mRNA in response to nutritional stress. RelE cleaves mRNAs that are positioned at the ribosomal A-site, between the second and third nucleotides of the A-site codon. It has been proposed that toxin–antitoxin loci function in bacterial programmed cell death, but evidence now indicates that these loci provide a control mechanism that helps free-living prokaryotes cope with nutritional stress.

[1]  K Kusano,et al.  Selfish behavior of restriction-modification systems , 1995, Science.

[2]  A. Kornberg,et al.  Guanosine Tetra- and Pentaphosphate Promote Accumulation of Inorganic Polyphosphate in Escherichia coli * , 1997, The Journal of Biological Chemistry.

[3]  R. Magnuson,et al.  Modular Organization of the Phd Repressor/Antitoxin Protein , 2004, Journal of bacteriology.

[4]  D. Helinski,et al.  Transcription and autoregulation of the stabilizing functions of broad‐host‐range plasmid RK2 in Escherichia coli, Agrobacterium tumefaciens and Pseudomonas aeruginosa , 1992, Molecular microbiology.

[5]  T. Nyström Role of guanosine tetraphosphate in gene expression and the survival of glucose or seryl-tRNA starved cells of Escherichia coli K12 , 1994, Molecular and General Genetics MGG.

[6]  Ehud Gazit,et al.  The YefM Antitoxin Defines a Family of Natively Unfolded Proteins , 2004, Journal of Biological Chemistry.

[7]  A. Bravo,et al.  Identification of components of a new stability system of plasmid R1, ParD, that is close to the origin of replication of this plasmid , 1987, Molecular and General Genetics MGG.

[8]  T. Nyström,et al.  Regulation of sigma factor competition by the alarmone ppGpp. , 2002, Genes & development.

[9]  M. Yarmolinsky,et al.  Plasmid addiction genes of bacteriophage P1: doc, which causes cell death on curing of prophage, and phd, which prevents host death when prophage is retained. , 1993, Journal of molecular biology.

[10]  S. Burley,et al.  Crystal structure of the MazE/MazF complex: molecular bases of antidote-toxin recognition. , 2003, Molecular cell.

[11]  C. Ponting,et al.  PIN domains in nonsense-mediated mRNA decay and RNAi , 2000, Current Biology.

[12]  K. Jensen,et al.  Effects of guanosine 3',5'-bisdiphosphate (ppGpp) on rate of transcription elongation in isoleucine-starved Escherichia coli. , 1994, The Journal of biological chemistry.

[13]  Finbarr Hayes,et al.  Axe–Txe, a broad‐spectrum proteic toxin–antitoxin system specified by a multidrug‐resistant, clinical isolate of Enterococcus faecium , 2003, Molecular microbiology.

[14]  H. Engelberg-Kulka,et al.  Bacterial programmed cell death systems as targets for antibiotics. , 2004, Trends in microbiology.

[15]  K. Gerdes,et al.  Toxin–antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes , 2005, Nucleic acids research.

[16]  J. Alonso,et al.  Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[17]  T. Ogura,et al.  Effects of the ccd function of the F plasmid on bacterial growth , 1985, Journal of bacteriology.

[18]  I. Golovliov,et al.  Genetic organization of the Francisella plasmid pFNL10. , 2001, Plasmid.

[19]  E. Ohtsubo,et al.  Two genes, pemK and pemI, responsible for stable maintenance of resistance plasmid R100 , 1988, Journal of bacteriology.

[20]  Vivek Anantharaman,et al.  New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system , 2003, Genome Biology.

[21]  H. Engelberg-Kulka,et al.  Escherichia coli mazEF-Mediated Cell Death Is Triggered by Various Stressful Conditions , 2004, Journal of bacteriology.

[22]  D. Helinski,et al.  Characterization of the stable maintenance properties of the par region of broad-host-range plasmid RK2 , 1996, Journal of bacteriology.

[23]  D. Chatterji,et al.  Revisiting the stringent response, ppGpp and starvation signaling. , 2001, Current opinion in microbiology.

[24]  R. Gourse,et al.  Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. , 2001, Journal of molecular biology.

[25]  M. Ruiz-Echevarría,et al.  Kid, a small protein of the parD stability system of plasmid R1, is an inhibitor of DNA replication acting at the initiation of DNA synthesis. , 1995, Journal of molecular biology.

[26]  Purification of the RelB and RelE Proteins ofEscherichia coli: RelE Binds to RelB and to Ribosomes , 2001, Journal of bacteriology.

[27]  A. Kornberg,et al.  Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. , 1991, The Journal of biological chemistry.

[28]  M. Yarmolinsky,et al.  Corepression of the P1 Addiction Operon by Phd and Doc , 1998, Journal of bacteriology.

[29]  S. Santos-Sierra,et al.  Genetic identification of two functional regions in the antitoxin of the parD killer system of plasmid R1. , 2002, FEMS microbiology letters.

[30]  K. Gerdes,et al.  Toxin-antitoxin systems homologous with relBE of Escherichia coli plasmid P307 are ubiquitous in prokaryotes. , 1999, Journal of molecular biology.

[31]  M. Strauch,et al.  Novel DNA binding domain and genetic regulation model of Bacillus subtilis transition state regulator AbrB , 2000, Nature Structural Biology.

[32]  M. Couturier,et al.  F plasmid CcdB killer protein ccdB gene mutants coding for non‐cytotoxic proteins which retain their regulatory functions , 1995, Molecular microbiology.

[33]  B. Irwin,et al.  Autoregulation of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis , 1994, Journal of bacteriology.

[34]  R. Sauer,et al.  DNA recognition by beta-sheets in the Arc repressor-operator crystal structure. , 1994, Nature.

[35]  M. Inouye,et al.  Interference of mRNA Function by Sequence-specific Endoribonuclease PemK* , 2004, Journal of Biological Chemistry.

[36]  H. Engelberg-Kulka,et al.  The Regulation of the Escherichia coli mazEF Promoter Involves an Unusual Alternating Palindrome* , 2001, The Journal of Biological Chemistry.

[37]  Thomas Nyström,et al.  Stationary-phase physiology. , 2003, Annual review of microbiology.

[38]  T. Wood,et al.  Combining the hok/sok, parDE, and pnd postsegregational killer loci to enhance plasmid stability , 1997, Applied and environmental microbiology.

[39]  T. Ogura,et al.  F plasmid ccd mechanism in Escherichia coli , 1986, Journal of bacteriology.

[40]  M. Couturier,et al.  Positive-selection vectors using the F plasmid ccdB killer gene. , 1994, Gene.

[41]  Rolf Bernander,et al.  Identification of Two Origins of Replication in the Single Chromosome of the Archaeon Sulfolobus solfataricus , 2004, Cell.

[42]  K. Gerdes,et al.  The antisense RNA of the par locus of pAD1 regulates the expression of a 33‐amino‐acid toxic peptide by an unusual mechanism , 2000, Molecular microbiology.

[43]  A Kornberg,et al.  Role of Inorganic Polyphosphate in Promoting Ribosomal Protein Degradation by the Lon Protease in E. coli , 2001, Science.

[44]  M. Ohnishi,et al.  A new plasmid-encoded proteic killer gene system: cloning, sequencing, and analyzing hig locus of plasmid Rts1. , 1996, Biochemical and biophysical research communications.

[45]  B. Kline,et al.  The F plasmid ccd autorepressor is a complex of CcdA and CcdB proteins , 1989, Molecular and General Genetics MGG.

[46]  D. Mazel,et al.  Comparative analysis of superintegrons: engineering extensive genetic diversity in the Vibrionaceae. , 2003, Genome research.

[47]  H. Schwab,et al.  Partitioning of broad-host-range plasmid RP4 is a complex system involving site-specific recombination , 1990, Journal of bacteriology.

[48]  S. Gottesman,et al.  Proteases and their targets in Escherichia coli. , 1996, Annual review of genetics.

[49]  S. Molin,et al.  Effects of genes exerting growth inhibition and plasmid stability on plasmid maintenance , 1987, Journal of bacteriology.

[50]  H. Engelberg-Kulka,et al.  Programmed Cell Death in Escherichia coli: Some Antibiotics Can Trigger mazEFLethality , 2001, Journal of bacteriology.

[51]  G. Mittenhuber,et al.  Occurrence of mazEF-like antitoxin/toxin systems in bacteria. , 1999, Journal of molecular microbiology and biotechnology.

[52]  J. Pogliano,et al.  ParE toxin encoded by the broad‐host‐range plasmid RK2 is an inhibitor of Escherichia coli gyrase , 2002, Molecular microbiology.

[53]  R. Sauer,et al.  Role of a Peptide Tagging System in Degradation of Proteins Synthesized from Damaged Messenger RNA , 1996, Science.

[54]  B. Diderichsen,et al.  Genetics of the relB locus in Escherichia coli , 1977, Journal of bacteriology.

[55]  K. Gerdes,et al.  RelE toxins from Bacteria and Archaea cleave mRNAs on translating ribosomes, which are rescued by tmRNA , 2003, Molecular microbiology.

[56]  T. Nyström,et al.  The Role of the Alarmone (p)ppGpp in ςN Competition for Core RNA Polymerase* , 2003, The Journal of Biological Chemistry.

[57]  D. Helinski,et al.  Plasmid RK2 toxin protein ParE: purification and interaction with the ParD antitoxin protein , 1996, Journal of bacteriology.

[58]  R. B. Jensen,et al.  Programmed cell death in bacteria: proteic plasmid stabilization systems , 1995, Molecular microbiology.

[59]  D. Helinski,et al.  Characteristics and significance of DNA binding activity of plasmid stabilization protein ParD from the broad host-range plasmid RK2. , 1993, The Journal of biological chemistry.

[60]  T. Bickle,et al.  Biology of DNA restriction. , 1993, Microbiological reviews.

[61]  Måns Ehrenberg,et al.  The Bacterial Toxin RelE Displays Codon-Specific Cleavage of mRNAs in the Ribosomal A Site , 2003, Cell.

[62]  S. Sayeed,et al.  The Stability Region of the Large Virulence Plasmid ofShigella flexneri Encodes an Efficient Postsegregational Killing System , 2000, Journal of bacteriology.

[63]  H. Afif,et al.  The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison–antidote system , 2001, Molecular microbiology.

[64]  S. Gottesman,et al.  Overproduction of the Lon protease triggers inhibition of translation in Escherichia coli: involvement of the yefM‐yoeB toxin‐antitoxin system , 2004, Molecular microbiology.

[65]  L. Eberl,et al.  The divergent promoters mediating transcription of the par locus of plasmid RP4 are subject to autoregulation , 1992, Molecular microbiology.

[66]  F. Neidhart Escherichia coli and Salmonella. , 1996 .

[67]  Thomas Kruse,et al.  Bacterial Mitotic Machineries , 2004, Cell.

[68]  B. Kline,et al.  Control of the ccd operon in plasmid F , 1989, Journal of bacteriology.

[69]  R. Sauer,et al.  The Doc Toxin and Phd Antidote Proteins of the Bacteriophage P1 Plasmid Addiction System Form a Heterotrimeric Complex* , 1999, The Journal of Biological Chemistry.

[70]  K. Gerdes,et al.  Mechanism of postsegregational killing by the hok gene product of the parB system of plasmid R1 and its homology with the relF gene product of the E. coli relB operon. , 1986, The EMBO journal.

[71]  M. Couturier,et al.  Lon‐dependent proteolysis of CcdA is the key control for activation of CcdB in plasmid‐free segregant bacteria , 1994, Molecular microbiology.

[72]  T. Nyström,et al.  Starvation, cessation of growth and bacterial aging. , 1999, Current opinion in microbiology.

[73]  M. Yarmolinsky,et al.  Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXP serine protease of Escherichia coli. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[74]  D. Helinski,et al.  Definition of a minimal plasmid stabilization system from the broad-host-range plasmid RK2 , 1992, Journal of bacteriology.

[75]  J. Alonso,et al.  Characterization of the effectors required for stable inheritance of Streptococcus pyogenes pSM19035-derived plasmids in Bacillus subtilis , 1993, Molecular and General Genetics MGG.

[76]  M. Lemonnier,et al.  Identification of Residues of the Kid Toxin Involved in Autoregulation of the parD System , 2004, Journal of bacteriology.

[77]  H. Engelberg-Kulka,et al.  An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[78]  K. Gerdes,et al.  RelE, a global inhibitor of translation, is activated during nutritional stress , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Ehrenberg,et al.  Ribosome rescue by tmRNA requires truncated mRNAs. , 2004, Journal of molecular biology.

[80]  G. Schreiber,et al.  The nucleotide sequence and characterization of the relA gene of Escherichia coli. , 1988, The Journal of biological chemistry.

[81]  H. Engelberg-Kulka,et al.  Postsegregational Killing Mediated by the P1 Phage “Addiction Module” phd-doc Requires the Escherichia coli Programmed Cell Death SystemmazEF , 2001, Journal of bacteriology.

[82]  H. Schwab,et al.  Stability of r-microbes: stabilization of plasmid vectors by the partitioning function of broad-host-range plasmid RP4. , 1993, Journal of biotechnology.

[83]  H. Engelberg-Kulka,et al.  Escherichia coli mazEF-mediated cell death as a defense mechanism that inhibits the spread of phage P1 , 2004, Molecular Genetics and Genomics.

[84]  K. Gerdes Toxin-Antitoxin Modules May Regulate Synthesis of Macromolecules during Nutritional Stress , 2000, Journal of bacteriology.

[85]  T. Miki,et al.  Modulation of DNA supercoiling activity of Escherichia coli DNA gyrase by F plasmid proteins. Antagonistic actions of LetA (CcdA) and LetD (CcdB) proteins. , 1992, The Journal of biological chemistry.

[86]  I. Chopra,et al.  Stabilization of Rhizobium symbiosis plasmids. , 1999, Microbiology.

[87]  R. Boelens,et al.  Structural and functional analysis of the kid toxin protein from E. coli plasmid R1. , 2002, Structure.

[88]  M. Katz,et al.  Analysis of sequences flanking the vap regions of Dichelobacter nodosus: evidence for multiple integration events, a killer system, and a new genetic element. , 1997, Microbiology.

[89]  D. Helinski,et al.  The parDE operon of the broad-host-range plasmid RK2 specifies growth inhibition associated with plasmid loss. , 1994, Journal of molecular biology.

[90]  E. Ohtsubo,et al.  Mapping and disruption of the chpB locus in Escherichia coli , 1994, Journal of bacteriology.

[91]  B. Barrell,et al.  Massive gene decay in the leprosy bacillus , 2001, Nature.

[92]  G. Pullinger,et al.  A Salmonella dublin virulence plasmid locus that affects bacterial growth under nutrient‐limited conditions , 1992, Molecular microbiology.

[93]  E. Ohtsubo,et al.  chpA and chpB, Escherichia coli chromosomal homologs of the pem locus responsible for stable maintenance of plasmid R100 , 1993, Journal of bacteriology.

[94]  K. Gerdes,et al.  Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins , 2002, Molecular microbiology.

[95]  D. Helinski,et al.  Different relative importances of the par operons and the effect of conjugal transfer on the maintenance of intact promiscuous plasmid RK2 , 1995, Journal of bacteriology.

[96]  M. Couturier,et al.  Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. , 1992, Journal of molecular biology.

[97]  P. O’Farrell The suppression of defective translation by ppGpp and its role in the stringent response , 1978, Cell.

[98]  K. Gerdes,et al.  Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA. , 2003, Journal of molecular biology.

[99]  M. Ehrenberg,et al.  Release of peptide promoted by the GGQ motif of class 1 release factors regulates the GTPase activity of RF3. , 2002, Molecular cell.

[100]  S. Ren,et al.  Characterization of a novel toxin-antitoxin module, VapBC, encoded by Leptospira interrogans chromosome , 2004, Cell Research.

[101]  M. Ohnishi,et al.  Specific protein-DNA and protein-protein interaction in the hig gene system, a plasmid-borne proteic killer gene system of plasmid Rts1. , 2001, Plasmid.

[102]  T. Hill,et al.  Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis , 2003, Molecular microbiology.

[103]  H. Ohtake,et al.  Inorganic polyphosphate kinase is required to stimulate protein degradation and for adaptation to amino acid starvation in Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Anton Meinhart,et al.  Crystal structure of the plasmid maintenance system ɛ/ζ: Functional mechanism of toxin ζ and inactivation by ɛ2ζ2 complex formation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Couturier,et al.  The antidote and autoregulatory functions of the F plasmid CcdA protein: a genetic and biochemical survey , 1994, Molecular and General Genetics MGG.

[106]  M. Inouye,et al.  Insights into the mRNA Cleavage Mechanism by MazF, an mRNA Interferase* , 2005, Journal of Biological Chemistry.

[107]  K. Gerdes,et al.  Delayed‐relaxed response explained by hyperactivation of RelE , 2004, Molecular microbiology.

[108]  W. Saenger,et al.  In vitro and in vivo Stability of the 2ζ2 Protein Complex of the Broad Host-Range Streptococcus pyogenes pSM19035 Addiction System , 2002, Biological chemistry.

[109]  M. Couturier,et al.  The interaction of the F plasmid killer protein, CcdB, with DNA gyrase: induction of DNA cleavage and blocking of transcription. , 1997, Journal of molecular biology.

[110]  D. Rawlings,et al.  The poison–antidote stability system of the broad‐host‐range Thiobacillus ferrooxidans plasmid pTF‐FC2 , 1997, Molecular microbiology.

[111]  H. Engelberg-Kulka,et al.  The Escherichia coli mazEF Suicide Module Mediates Thymineless Death , 2003, Journal of bacteriology.

[112]  Mitsuhiko Ikura,et al.  MazF cleaves cellular mRNAs specifically at ACA to block protein synthesis in Escherichia coli. , 2003, Molecular cell.

[113]  Walter Keller,et al.  The anti-toxin ParD of plasmid RK2 consists of two structurally distinct moieties and belongs to the ribbon-helix-helix family of DNA-binding proteins. , 2002 .

[114]  L. Wyns,et al.  The F plasmid CcdB protein induces efficient ATP-dependent DNA cleavage by gyrase. , 1993, Journal of molecular biology.

[115]  Shigeyuki Yokoyama,et al.  Regulation through the Secondary Channel—Structural Framework for ppGpp-DksA Synergism during Transcription , 2004, Cell.

[116]  M. Mardis,et al.  Structure and organization of hip, an operon that affects lethality due to inhibition of peptidoglycan or DNA synthesis , 1991, Journal of bacteriology.

[117]  T. Ogura,et al.  Mini-F plasmid genes that couple host cell division to plasmid proliferation. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[118]  M. Yarmolinsky,et al.  Autoregulation of the Plasmid Addiction Operon of Bacteriophage P1* , 1996, The Journal of Biological Chemistry.

[119]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[120]  R. B. Jensen,et al.  Comparison of ccd of F, parDE of RP4, and parD of R1 using a novel conditional replication control system of plasmid R1 , 1995, Molecular microbiology.

[121]  K. Gerdes,et al.  The parB (hok/sok) Locus of Plasmid R1: A General Purpose Plasmid Stabilization System , 1988, Bio/Technology.

[122]  T. Nystöm Role of guanosine tetraphosphate in gene expression and the survival of glucose or seryl-tRNA starved cells of Escherichia coli K12. , 1994, Molecular & general genetics : MGG.

[123]  T. Nyström Conditional senescence in bacteria: death of the immortals , 2003, Molecular microbiology.

[124]  S. Gottesman,et al.  ATP-dependent Degradation of CcdA by Lon Protease , 1996, The Journal of Biological Chemistry.

[125]  T. Nyström,et al.  Regulation of (cid:1) factor competition by the alarmone ppGpp , 2002 .

[126]  Junjie Zhang,et al.  Characterization of the Interactions within the mazEF Addiction Module of Escherichia coli* , 2003, Journal of Biological Chemistry.

[127]  Eduardo Díaz,et al.  The Behavior of Bacteria Designed for Biodegradation , 1994, Bio/Technology.

[128]  S. Molin,et al.  Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[129]  John W. Foster,et al.  DksA A Critical Component of the Transcription Initiation Machinery that Potentiates the Regulation of rRNA Promoters by ppGpp and the Initiating NTP , 2004, Cell.

[130]  H. Bremer,et al.  Control of spoT-dependent ppGpp synthesis and degradation in Escherichia coli. , 1996, Journal of molecular biology.

[131]  T. Miki,et al.  Control of cell division by sex factor F in Escherichia coli. I. The 42.84-43.6 F segment couples cell division of the host bacteria with replication of plasmid DNA. , 1984, Journal of molecular biology.

[132]  Robert T. Sauer,et al.  DNA recognition by β-sheets in the Arc represser–operator crystal structure , 1994, Nature.

[133]  S. Cohen,et al.  In vivo site-specific genetic recombination promoted by the EcoRI restriction endonuclease. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[134]  R. Liddington,et al.  Crystal structure of CcdB, a topoisomerase poison from E. coli. , 1999, Journal of molecular biology.

[135]  A mutation that decreases the efficiency of plasmid R1 replication leads to the activation of parD, a killer stability system of the plasmid. , 1995, FEMS microbiology letters.

[136]  K. Gerdes,et al.  The Escherichia coli relBE genes belong to a new toxin–antitoxin gene family , 1998, Molecular microbiology.

[137]  R. Gourse,et al.  Mechanism of regulation of transcription initiation by ppGpp. I. Effects of ppGpp on transcription initiation in vivo and in vitro. , 2001, Journal of molecular biology.