Smooth Max-Information as One-Shot Generalization for Mutual Information
暂无分享,去创建一个
[1] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[2] Masahito Hayashi,et al. A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.
[3] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[4] A. Uhlmann. The Transition Probability for States of *‐Algebras , 1985 .
[5] Sergio Verdú,et al. A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.
[6] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[7] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[8] Masahito Hayashi,et al. An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.
[9] R. Renner,et al. The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.
[10] Sergio Verdú,et al. Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.
[11] Renato Renner,et al. An intuitive proof of the data processing inequality , 2011, Quantum Inf. Comput..
[12] R. Renner,et al. Min- and Max-Entropy in Infinite Dimensions , 2010, 1004.1386.
[13] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[14] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[15] Mark M. Wilde,et al. Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation , 2011, IEEE Transactions on Information Theory.
[16] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[17] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[18] Nilanjana Datta,et al. Beyond i.i.d. in Quantum Information Theory , 2006, 2006 IEEE International Symposium on Information Theory.
[19] DattaNilanjana,et al. One-Shot Lossy Quantum Data Compression , 2013 .
[20] Nilanjana Datta,et al. Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.
[21] Fernando G. S. L. Brandão,et al. Exponential Decay of Correlations Implies Area Law , 2012, Communications in Mathematical Physics.
[22] Nilanjana Datta,et al. The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.
[23] Renato Renner,et al. Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[24] N. Datta,et al. The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.
[25] Joseph M. Renes,et al. One-Shot Lossy Quantum Data Compression , 2013, IEEE Transactions on Information Theory.
[26] Marco Tomamichel,et al. Chain Rules for Smooth Min- and Max-Entropies , 2012, IEEE Transactions on Information Theory.
[27] Masahito Hayashi,et al. General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.