Smooth Max-Information as One-Shot Generalization for Mutual Information

We study formal properties of smooth max-information, a generalization of von Neumann mutual information derived from the max-relative entropy. Recent work suggests that it is a useful quantity in one-shot channel coding, quantum rate distortion theory, and the physics of quantum many-body systems. Max-information can be defined in multiple ways. We demonstrate that different smoothed definitions are essentially equivalent (up to logarithmic terms in the smoothing parameters). These equivalence relations allow us to derive new chain rules for the max-information in terms of min- and max-entropies, thus extending the smooth entropy formalism to mutual information.

[1]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[2]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[3]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[4]  A. Uhlmann The Transition Probability for States of *‐Algebras , 1985 .

[5]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[6]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[7]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[8]  Masahito Hayashi,et al.  An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.

[9]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[10]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[11]  Renato Renner,et al.  An intuitive proof of the data processing inequality , 2011, Quantum Inf. Comput..

[12]  R. Renner,et al.  Min- and Max-Entropy in Infinite Dimensions , 2010, 1004.1386.

[13]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[14]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[15]  Mark M. Wilde,et al.  Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation , 2011, IEEE Transactions on Information Theory.

[16]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[17]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[18]  Nilanjana Datta,et al.  Beyond i.i.d. in Quantum Information Theory , 2006, 2006 IEEE International Symposium on Information Theory.

[19]  DattaNilanjana,et al.  One-Shot Lossy Quantum Data Compression , 2013 .

[20]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[21]  Fernando G. S. L. Brandão,et al.  Exponential Decay of Correlations Implies Area Law , 2012, Communications in Mathematical Physics.

[22]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[23]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[24]  N. Datta,et al.  The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.

[25]  Joseph M. Renes,et al.  One-Shot Lossy Quantum Data Compression , 2013, IEEE Transactions on Information Theory.

[26]  Marco Tomamichel,et al.  Chain Rules for Smooth Min- and Max-Entropies , 2012, IEEE Transactions on Information Theory.

[27]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.