Blind Image Deconvolution Using Machine Learning for Three-Dimensional Microscopy

In this work, we propose a novel method for the regularization of blind deconvolution algorithms. The proposed method employs example-based machine learning techniques for modeling the space of point spread functions. During an iterative blind deconvolution process, a prior term attracts the point spread function estimates to the learned point spread function space. We demonstrate the usage of this regularizer within a Bayesian blind deconvolution framework and also integrate into the latter a method for noise reduction, thus creating a complete blind deconvolution method. The application of the proposed algorithm is demonstrated on synthetic and real-world three-dimensional images acquired by a wide-field fluorescence microscope, where the need for blind deconvolution algorithms is indispensable, yielding excellent results.

[1]  Jiaya Jia,et al.  Single Image Motion Deblurring Using Transparency , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Jean-Luc Starck,et al.  Deconvolution and Blind Deconvolution in Astronomy , 2007 .

[3]  Yogesh Rathi,et al.  A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  P. Stokseth Properties of a Defocused Optical System , 1969 .

[5]  Richard Szeliski,et al.  PSF estimation using sharp edge prediction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[7]  Bo Zhang,et al.  Blind deconvolution for diffraction-limited fluorescence microscopy , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[8]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[9]  Alvaro R. De Pierro,et al.  A modified expectation maximization algorithm for penalized likelihood estimation in emission tomography , 1995, IEEE Trans. Medical Imaging.

[10]  Sundaresh Ram,et al.  Removing Camera Shake from a Single Photograph , 2009 .

[11]  Jiaya Jia,et al.  High-quality motion deblurring from a single image , 2008, ACM Trans. Graph..

[12]  Reginald L. Lagendijk,et al.  Regularized iterative image restoration with ringing reduction , 1988, IEEE Trans. Acoust. Speech Signal Process..

[13]  Yogesh Rathi,et al.  Shape-Based Approach to Robust Image Segmentation using Kernel PCA , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  E. Wolf,et al.  Principles of Optics (7th Ed) , 1999 .

[15]  A. Carasso Linear and Nonlinear Image Deblurring: A Documented Study , 1999 .

[16]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[17]  A.V. Oppenheim,et al.  The importance of phase in signals , 1980, Proceedings of the IEEE.

[18]  Michael W. Marcellin,et al.  Blur identification from vector quantizer encoder distortion , 1998, IEEE Trans. Image Process..

[19]  J. Goodman Introduction to Fourier optics , 1969 .

[20]  Jake K. Aggarwal,et al.  Digital reconstruction of three-dimensional serially sectioned optical images , 1988, IEEE Trans. Acoust. Speech Signal Process..

[21]  T J Holmes,et al.  Blind deconvolution of quantum-limited incoherent imagery: maximum-likelihood approach. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[22]  Ying Wu,et al.  Motion from blur , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[23]  Steven J. Simske,et al.  Blind Image Deconvolution Through Support Vector Regression , 2007, IEEE Transactions on Neural Networks.

[24]  J N Turner,et al.  Blind deconvolution of fluorescence micrographs by maximum-likelihood estimation. , 1995, Applied optics.

[25]  Steven J. Simske,et al.  Blur identification based on kurtosis minimization , 2005, IEEE International Conference on Image Processing 2005.

[26]  Ramesh Raskar,et al.  Coded exposure photography: motion deblurring using fluttered shutter , 2006, SIGGRAPH '06.

[27]  Joseph W. Goodman,et al.  Introduction to Fourier Optics; Second Edition , 1996 .

[28]  J. C. Dainty,et al.  Iterative blind deconvolution method and its applications , 1988 .

[29]  S. Gibson,et al.  Experimental test of an analytical model of aberration in an oil-immersion objective lens used in three-dimensional light microscopy. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[30]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[31]  J. Zerubia,et al.  Gaussian approximations of fluorescence microscope point-spread function models. , 2007, Applied optics.

[32]  David A. Agard,et al.  Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses , 1995, Electronic Imaging.

[33]  Olivier D. Faugeras,et al.  Statistical shape influence in geodesic active contours , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[34]  William T. Freeman,et al.  Example-Based Super-Resolution , 2002, IEEE Computer Graphics and Applications.

[35]  Franck Marchis,et al.  AIDA: an adaptive image deconvolution algorithm with application to multi-frame and three-dimensional data. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Aggelos K. Katsaggelos,et al.  A VQ-based blind image restoration algorithm , 2003, IEEE Trans. Image Process..

[37]  Linda G. Shapiro,et al.  Computer and Robot Vision , 1991 .

[38]  D. A. Fish,et al.  Blind deconvolution by means of the Richardson-Lucy algorithm. , 1995 .

[39]  D A Agard,et al.  Dispersion, aberration and deconvolution in multi‐wavelength fluorescence images , 1996, Journal of microscopy.

[40]  Nikolas P. Galatsanos,et al.  Projection-based blind deconvolution , 1994 .

[41]  Renaud Keriven,et al.  Active-Contour-Based Image Segmentation Using Machine Learning Techniques , 2007, MICCAI.

[42]  Fionn Murtagh,et al.  Deconvolution in Astronomy: A Review , 2002 .

[43]  W. Eric L. Grimson,et al.  A shape-based approach to the segmentation of medical imagery using level sets , 2003, IEEE Transactions on Medical Imaging.

[44]  Ann B. Lee,et al.  Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[46]  M. Cannon Blind deconvolution of spatially invariant image blurs with phase , 1976 .

[47]  Michael Elad,et al.  Example-based single document image super-resolution: a global MAP approach with outlier rejection , 2007, Multidimens. Syst. Signal Process..

[48]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[49]  Bobby Bodenheimer,et al.  Synthesis and evaluation of linear motion transitions , 2008, TOGS.

[50]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[51]  Renaud Keriven,et al.  Shape Priors using Manifold Learning Techniques , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[52]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .

[53]  Josiane Zerubia,et al.  A deconvolution method for confocal microscopy with total variation regularization , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[54]  Mats Ulfendahl,et al.  Image-adaptive deconvolution for three-dimensional deep biological imaging. , 2003, Biophysical journal.

[55]  Richard G. Lane,et al.  Automatic multidimensional deconvolution , 1987 .

[56]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[57]  P. Hall Radiometry and the Detection of Optical Radiation , 1984 .

[58]  Nikos Paragios,et al.  Shape Priors for Level Set Representations , 2002, ECCV.

[59]  D. Malacara-Hernández,et al.  PRINCIPLES OF OPTICS , 2011 .

[60]  Russell M. Mersereau,et al.  Blur identification by the method of generalized cross-validation , 1992, IEEE Trans. Image Process..

[61]  Yogesh Rathi,et al.  A Shape-Based Approach to Robust Image Segmentation , 2006, ICIAR.

[62]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[63]  K. Egiazarian,et al.  Blind image deconvolution , 2007 .

[64]  Mostafa Kaveh,et al.  Blind image restoration by anisotropic regularization , 1999, IEEE Trans. Image Process..

[65]  Ivor W. Tsang,et al.  The pre-image problem in kernel methods , 2003, IEEE Transactions on Neural Networks.

[66]  Jose-Angel Conchello,et al.  Parametric blind deconvolution of microscopic images: further results , 1998, Photonics West - Biomedical Optics.

[67]  N. Streibl Three-dimensional imaging by a microscope , 1985 .

[68]  Allen Tannenbaum,et al.  Statistical shape analysis using kernel PCA , 2006, Electronic Imaging.

[69]  T. Wilson,et al.  Aberration correction for confocal imaging in refractive‐index‐mismatched media , 1998 .

[70]  P. Green Bayesian reconstructions from emission tomography data using a modified EM algorithm. , 1990, IEEE transactions on medical imaging.

[71]  F. Tsumuraya,et al.  Iterative blind deconvolution method using Lucy's algorithm , 1994 .