Chaos in one-dimensional structural mechanics

Notwithstanding the presence of some books summarizing specific research bodies on structural systems, reviews on nonlinear dynamics and chaos in mechanical systems and structures are quite few. This paper aims at giving a first contribution in this direction, focusing on chaos in one-dimensional structural mechanics, and reviewing fundamental studies and main outcomes obtained for macromechanical systems and applications in classical areas of mechanical, aeronautical and civil engineering. Research material is presented according to a tentatively comprehensive perspective, by suitably framing the overviewed complex dynamic phenomena of a given class of structures within the underlying continuous/reduced modelling context and the regular phenomena from which they ensue. This is a demanding perspective, which also entails leaving a number of important topics aside. Chaos in cable, beam/arch, and coupled cable-beam structures is reviewed, as highlighted in both engineering-oriented studies and theoretically driven ones, paying attention also to some relevant applications.

[1]  R. Alaggio,et al.  Nonlinear coupling and instability in the forced dynamics of a non-shallow arch: theory and experiments , 2012 .

[2]  M. R. Silva,et al.  Nonlinear Flexural-Flexural-Torsional Dynamics of Inextensional Beams. I. Equations of Motion , 1978 .

[3]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[4]  Yozo Fujino,et al.  An experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed-beam , 1993, Nonlinear Dynamics.

[5]  G. Rega,et al.  Nonlinear vibrations of suspended cables—Part II: Deterministic phenomena , 2004 .

[6]  A. K. Bajaj,et al.  On the amplitude dynamics and crisis in resonant motion of stretched strings , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[7]  G. Schmidt,et al.  Vibrations of Arches and Onset of Chaos , 1993 .

[8]  Celso Grebogi,et al.  Basins of Attraction of Periodic Oscillations in Suspension Bridges , 2004 .

[9]  P. S. Symonds,et al.  Fractal Dimensions in Elastic-Plastic Beam Dynamics , 1995 .

[10]  Giuseppe Rega,et al.  The effects of kinematic condensation on internally resonant forced vibrations of shallow horizontal cables , 2007 .

[11]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[12]  Giuseppe Rega,et al.  Multimode dynamics and out-of-plane drift in suspended cable using the kinematically condensed model , 2009 .

[13]  Wei Zhang,et al.  Chaotic motion and its control for nonlinear nonplanar oscillations of a parametrically excited cantilever beam , 2005 .

[14]  G. Kovačič,et al.  Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation , 1992 .

[15]  Ülo Lepik Elastic-plastic vibrations of a buckled beam , 1995 .

[16]  Paulo B. Gonçalves,et al.  Influence of axial loads on the nonplanar vibrations of cantilever beams , 2012 .

[17]  Noel C. Perkins,et al.  Modal interactions in the non-linear response of elastic cables under parametric/external excitation , 1992 .

[18]  Zhuangpeng Yi,et al.  Modal interaction activations and nonlinear dynamic response of shallow arch with both ends vertically elastically constrained for two-to-one internal resonance , 2014 .

[19]  Jerrold E. Marsden,et al.  A partial differential equation with infinitely many periodic orbits: Chaotic oscillations of a forced beam , 1981 .

[20]  Giuseppe Rega,et al.  Nonlinear vibrations of suspended cables—Part I: Modeling and analysis , 2004 .

[21]  Giuseppe Rega,et al.  Nonlinear longitudinal/transversal modal interactions in highly extensible suspended cables , 2008 .

[22]  Ashitava Ghosal,et al.  Nonlinear Dynamics of a Rotating Flexible Link , 2015 .

[23]  Wei Zhang,et al.  Multipulse Shilnikov orbits and Chaotic Dynamics for Nonlinear Nonplanar Motion of a Cantilever Beam , 2005, Int. J. Bifurc. Chaos.

[24]  Giuseppe Rega,et al.  Experimental unfolding of the nonlinear dynamics of a cable-mass suspended system around a divergence-Hopf bifurcation , 2009 .

[25]  S. Wiggins,et al.  Orbits homoclinic to resonances: the Hamiltonian case , 1993 .

[26]  A. H. Nayfeh,et al.  Resonant non-linear normal modes. Part I: analytical treatment for structural one-dimensional systems , 2003 .

[27]  Charles M. Krousgrill,et al.  NON-LINEAR DYNAMIC RESPONSE OF SHALLOW ARCHES TO HARMONIC FORCING , 1996 .

[28]  M. Yao,et al.  Global Bifurcations and Chaotic Dynamics in Nonlinear Nonplanar Oscillations of a Parametrically Excited Cantilever Beam , 2005 .

[29]  Norio Hasebe,et al.  The problem of an elastic-plastic beam dynamics and an incomplete co-dimension two bifurcation , 1997 .

[30]  Qingming Li,et al.  Chaotic and asymmetrical beam response to impulsive load , 2004 .

[31]  Fangqi Chen,et al.  Homoclinic orbits in a shallow arch subjected to periodic excitation , 2014, Nonlinear Dynamics.

[32]  Ali H. Nayfeh,et al.  Nonlinear Responses of Buckled Beams to Subharmonic-Resonance Excitations , 2004 .

[33]  P. Frank Pai,et al.  Bifurcation Structure for Modulated Vibration of Strings subjected to harmonic boundary excitations , 2011, Int. J. Bifurc. Chaos.

[34]  Longmao Zhao,et al.  Experimental results on the counter-intuitive behaviour of thin clamped beams subjected to projectile impact , 1991 .

[35]  Angelo Marcello Tarantino,et al.  Homoclinic and heteroclinic bifurcations in the non-linear dynamics of a beam resting on an elastic substrate , 1999 .

[36]  N. Sri Namachchivaya,et al.  Chaotic Dynamics of Shallow Arch Structures under 1:2 Resonance , 1997 .

[37]  Joseph P. Cusumano,et al.  Chaotic non-planar vibrations of the thin elastica: Part II: Derivation and analysis of a low-dimensional model , 1995 .

[38]  Michael S. Triantafyllou,et al.  The elastic frequencies of cables , 1988 .

[39]  Somchai Chucheepsakul,et al.  Large Amplitude Three-Dimensional Free Vibrations of Inclined Sagged Elastic Cables , 2003 .

[40]  Umberto Perego,et al.  An Energy Approach to Anomalous Damped Elastic-Plastic Response to Short Pulse Loading , 1989 .

[41]  Philip Holmes,et al.  Spatially complex equilibria of buckled rods , 1988 .

[42]  S. A. Ambartsumian,et al.  On the model of bodies with their mechanical properties depending on the strain rate , 1986 .

[43]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[44]  Angelo Marcello Tarantino,et al.  Chaotic dynamics of an elastic beam resting on a winkler-type soil , 1996 .

[45]  Nicholas B. Tufillaro,et al.  Torus doubling and chaotic string vibrations: Experimental results , 1990 .

[46]  Qingyu Xu,et al.  Bifurcations and chaos of an inclined cable , 2009 .

[47]  Zhengrong Liu,et al.  Chaotic Oscillation of Saddle Form Cable-Suspended Roofs under Vertical Excitation Action , 1997 .

[48]  Y. A. Amer,et al.  Chaotic vibration and resonance phenomena in a parametrically excited string-beam coupled system , 2012 .

[49]  Umberto Perego,et al.  Discussion: “Chaotic Motion of an Elastic-Plastic Beam” (Poddar, B., Moon, F. C., and Mukherjee, S., 1988, ASME J. Appl. Mech., 55, pp. 185–189) , 1988 .

[50]  Mohamed Belhaq,et al.  Quasi-periodic bursters and chaotic dynamics in a shallow arch subject to a fast–slow parametric excitation , 2020, Nonlinear Dynamics.

[51]  Joseph P. Cusumano,et al.  Chaotic non-planar vibrations of the thin elastica: Part I: Experimental observation of planar instability , 1995 .

[52]  Francis C. Moon,et al.  Experimental Dynamics of a Hanging Cable Carrying Two Concentrated Masses , 1995 .

[53]  Dean T. Mook,et al.  Theoretical and experimental study of modal interaction in a two-degree-of-freedom structure , 1984 .

[54]  Giuseppe Rega,et al.  Prediction of bifurcations and chaos for an asymmetric elastic oscillator , 1992 .

[55]  Gregor Kovačič,et al.  A Melnikov Method for Homoclinic Orbits with Many Pulses , 1998 .

[56]  A. Champneys,et al.  Spatially complex localisation in twisted elastic rods constrained to a cylinder , 2002 .

[57]  M. B. Rubin,et al.  NUMERICAL SOLUTIONS OF FORCED VIBRATION AND WHIRLING OF A NON-LINEAR STRING USING THE THEORY OF A COSSERAT POINT , 1996 .

[58]  Giuseppe Rega,et al.  Spatio-temporal dimensionality in the overall complex dynamics of an experimental cable/mass system , 2001 .

[59]  Lianhua Wang,et al.  On the symmetric modal interaction of the suspended cable: Three-to-one internal resonance , 2006 .

[60]  P. S. Symonds,et al.  Chaotic Responses of a Two-Degree-of-Freedom Elastic-Plastic Beam Model to Short Pulse Loading , 1992 .

[61]  A. R. Champneys,et al.  A multiplicity of localized buckling modes for twisted rod equations , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[62]  Lianhua Wang,et al.  NON-LINEAR DYNAMIC ANALYSIS OF THE TWO-DIMENSIONAL SIMPLIFIED MODEL OF AN ELASTIC CABLE , 2002 .

[63]  STEFANO LENCI,et al.  Nonlinear Phenomena in the Single-Mode Dynamics of a Cable-Supported Beam , 2009, Int. J. Bifurc. Chaos.

[64]  M. S. Triantafyllou,et al.  Natural Frequencies and Modes of Inclined Cables , 1986 .

[65]  Wei Zhang,et al.  Global dynamics of the cable under combined parametrical and external excitations , 2002 .

[66]  Gabriel Cederbaum,et al.  Periodic and chaotic behavior of viscoelastic nonlinear (elastica) bars under harmonic excitations , 1995 .

[67]  A. K. Bajaj,et al.  Nonlinear nonplanar dynamics of a parametrically excited inextensional elastic beam , 1991 .

[68]  Qingyu Xu,et al.  Bifurcations and chaotic dynamics in suspended cables under simultaneous parametric and external excitations , 2010 .

[69]  Michael J. Leamy,et al.  INTERNAL RESONANCES IN WHIRLING STRINGS INVOLVING LONGITUDINAL DYNAMICS AND MATERIAL NON-LINEARITIES , 2000 .

[70]  Ali H. Nayfeh,et al.  Experimental Investigation of Single-Mode Responses in a Fixed-Fixed Buckled Beam , 1996 .

[71]  N. Sri Namachchivaya,et al.  Chaotic Motion of Shallow Arch Structures under 1:1 Internal Resonance , 1997 .

[72]  Minghai Wei,et al.  Bifurcation and chaos of a cable–beam coupled system under simultaneous internal and external resonances , 2012 .

[73]  Ali H. Nayfeh,et al.  On the Nonlinear Dynamics of a Buckled Beam Subjected to a Primary-Resonance Excitation , 2004 .

[74]  Vincenzo Gattulli,et al.  A parametric analytical model for non‐linear dynamics in cable‐stayed beam , 2002 .

[75]  G. Rega,et al.  Numerical simulations of chaotic dynamics in a model of an elastic cable , 1990 .

[76]  Jorge S. Ballaben,et al.  Nonlinear dynamic analysis of a 3D guyed mast , 2018 .

[77]  Balakumar Balachandran,et al.  A Review of Nonlinear Dynamics of Mechanical Systems in Year 2008 , 2008 .

[78]  Y. Fujino,et al.  A NON-LINEAR DYNAMIC MODEL FOR CABLES AND ITS APPLICATION TO A CABLE-STRUCTURE SYSTEM , 1995 .

[79]  J. Rudowski,et al.  On an approximate criterion for chaotic motion in a model of a buckled beam , 1987 .

[80]  Daniela Dinca Baran Mathematical models used in studying the chaotic vibration of buckled beams , 1994 .

[81]  Philip Holmes,et al.  Ninety Plus Thirty Years of Nonlinear Dynamics: Less is More and More is Different , 2005, Int. J. Bifurc. Chaos.

[82]  A. Leissa On a curve veering aberration , 1974 .

[83]  J. Bajkowski,et al.  The 12 subharmonic resonance and its transition to chaotic motion in a non-linear oscillator , 1986 .

[84]  Walter Lacarbonara,et al.  Direct treatment and discretizations of non-linear spatially continuous systems , 1999 .

[85]  Steven W. Shaw,et al.  Chaotic vibrations of a beam with non-linear boundary conditions , 1983 .

[86]  Liangqiang Zhou,et al.  Global bifurcation analysis and chaos of an arch structure with parametric and forced excitation , 2010 .

[87]  Giuseppe Rega,et al.  Non-linearity, bifurcation and chaos in the finite dynamics of different cable models , 1996 .

[88]  Cadot Olivier,et al.  Wave Turbulence in Vibrating Plates , 2016 .

[89]  Alan C. Lazer,et al.  Large-Amplitude Periodic Oscillations in Suspension Bridges: Some New Connections with Nonlinear Analysis , 1990, SIAM Rev..

[90]  Giuseppe Rega,et al.  Nonlinear dynamics in mechanics and engineering: 40 years of developments and Ali H. Nayfeh’s legacy , 2019, Nonlinear Dynamics.

[91]  Peter Wriggers,et al.  A finite element approach to the chaotic motion of geometrically exact rods undergoing in-plane deformations , 1996 .

[92]  Raymond H. Plaut,et al.  Period Doubling and Chaos in Unsymmetric Structures Under Parametric Excitation , 1989 .

[93]  Francis C. Moon,et al.  Double Poincaré sections of a quasi-periodically forced, chaotic attractor☆ , 1985 .

[94]  Ali H. Nayfeh,et al.  Non-linear responses of suspended cables to primary resonance excitations , 2003 .

[95]  Anil K. Bajaj,et al.  Period-Doubling Bifurcations and Modulated Motions in Forced Mechanical Systems , 1985 .

[96]  George Haller,et al.  Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schro¨dinger equation , 1995 .

[97]  Wei Zhang,et al.  Studies on Bifurcation and Chaos of a String-Beam Coupled System with Two Degrees-of-Freedom , 2006 .

[98]  Francis C. Moon,et al.  Chaotic Motion of an Elastic-Plastic Beam , 1988 .

[99]  Kazuyuki Yagasaki Chaotic Dynamics of a Quasi-Periodically Forced Beam , 1992 .

[100]  Li-Qun Chen,et al.  Dynamical behavior of nonlinear viscoelastic columns based on 2-order galerkin truncation☆ , 2000 .

[101]  Raymond H. Plaut,et al.  Oscillations and instability of a shallow-arch under two-frequency excitation , 1985 .

[102]  Wanda Szemplińska-Stupnicka Secondary resonances and approximate models of routes to chaotic motion in non-linear oscillators , 1987 .

[103]  John Dugundji,et al.  Nonlinear Vibrations of a Buckled Beam Under Harmonic Excitation , 1971 .

[104]  S. M. Spottswood,et al.  Characterizing Dynamic Transitions Associated With Snap-Through: A Discrete System , 2013 .

[105]  N. Sri Namachchivaya,et al.  Non-linear dynamics of a shallow arch under periodic excitation —I.1:2 internal resonance , 1994 .

[106]  Ali H. Nayfeh,et al.  Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams , 1998 .

[107]  Philip Holmes,et al.  Non-linear, non-planar and non-periodic vibrations of a string , 1992 .

[108]  Takao Yamaguchi,et al.  Contribution of Multiple Vibration Modes to Chaotic Vibrations of a Post-buckled Beam with an Axial Elastic Constraint , 2008 .

[109]  Giuseppe Rega,et al.  Nonlinear hybrid-mode resonant forced oscillations of sagged inclined cables at avoidances , 2007 .

[110]  Bernd Krauskopf,et al.  Vibration Dynamics of an Inclined Cable Excited Near Its Second Natural Frequency , 2014, Int. J. Bifurc. Chaos.

[111]  Zhifang Liu,et al.  Nonlinear flexural waves and chaos behavior in finite-deflection Timoshenko beam , 2010 .

[112]  G. Rega,et al.  Experimental Investigation of the Nonlinear Response of a Hanging Cable. Part II: Global Analysis , 1997 .

[113]  Vincenzo Gattulli,et al.  Nonlinear interactions in the planar dynamics of cable-stayed beam , 2003 .

[114]  Ali H. Nayfeh,et al.  Modal Interactions in Dynamical and Structural Systems , 1989 .

[115]  Ioannis K. Chatjigeorgiou,et al.  Numerical simulation of the chaotic lateral vibrations of long rotating beams , 2013, Appl. Math. Comput..

[116]  Lianhua Wang,et al.  Nonlinear interactions and chaotic dynamics of suspended cables with three-to-one internal resonances , 2006 .

[117]  R. Alaggio,et al.  Non-linear oscillations of a four-degree-of-freedom model of a suspended cable under multiple internal resonance conditions , 1995 .

[118]  Steven W. Shaw,et al.  Chaotic dynamics of a slender beam rotating about its longitudinal axis , 1988 .

[119]  Ali H. Nayfeh,et al.  Three-dimensional nonlinear vibrations of composite beams — II. flapwise excitations , 1991 .

[120]  Paulo B. Gonçalves,et al.  Nonlinear Dynamics and Instability as Important Design Concerns for a Guyed Mast , 2013 .

[121]  P. Symonds,et al.  Anomalous dynamic elastic-plastic response of a Galerkin beam model , 1996 .

[122]  Kazuyuki Yagasaki,et al.  Homoclinic and heteroclinic behavior in an infinite-degree-of-freedom Hamiltonian system: Chaotic free vibrations of an undamped, buckled beam , 2001 .

[123]  Albert C. J. Luo,et al.  Bifurcation Trees of Period-1 Motions to Chaos of a Nonlinear Cable Galloping , 2017 .

[124]  Tongxi Yu,et al.  Counterintuitive Behavior in a Problem of Elastic-Plastic Beam Dynamics , 1985 .

[125]  Paulo B. Gonçalves,et al.  Multiple internal resonances and nonplanar dynamics of a cruciform beam with low torsional stiffness , 2017 .

[126]  Jon Juel Thomsen,et al.  Chaotic vibrations of non-shallow arches , 1992 .

[127]  John W. Miles,et al.  Resonant, nonplanar motion of a stretched string , 1984 .

[128]  Oliver M. O’Reilly,et al.  Global bifurcations in the forced vibration of a damped string , 1993 .

[129]  P. S. Symonds,et al.  Dynamic plastic instabilities in response to short-pulse excitation : effects of slenderness ratio and damping , 1988, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[130]  Celso Grebogi,et al.  Erosion of the safe basin for the transversal oscillations of a suspension bridge , 2003 .

[131]  Fabrizio Vestroni,et al.  Non-linear modal properties of non-shallow cables , 2007 .

[132]  G. Rega,et al.  Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part II: Internal resonance activation, reduced-order models and nonlinear normal modes , 2007 .

[133]  Jan Awrejcewicz,et al.  Deterministic Chaos in One Dimensional Continuous Systems , 2016 .

[134]  Lu Jin,et al.  Nonlinear dynamics of a cable-stayed beam driven by sub-harmonic and principal parametric resonance , 2016 .

[135]  Giuseppe Rega,et al.  Direct and discretized perturbations revisited: A new error source interpretation, with application to moving boundary problem , 2020 .

[136]  Mohamed Belhaq,et al.  Nonlinear vibrations of a shallow arch under a low frequency and a resonant harmonic excitations , 2016 .

[137]  Wei Zhang,et al.  Nonlinear study of the dynamic behavior of a string-beam coupled system under combined excitations , 2011 .

[138]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[139]  Giuseppe Rega,et al.  Characterizing bifurcations and classes of motion in the transition to chaos through 3D-tori of a continuous experimental system in solid mechanics , 2000 .

[140]  Alan R. Champneys,et al.  The Spatial Complexity of Localized Buckling in Rods with Noncircular Cross Section , 1998, SIAM J. Appl. Math..

[141]  Guowei Ma,et al.  Dynamic asymmetrical instability of elastic-plastic beams , 2005 .

[142]  P. S. Symonds,et al.  Some experimental observations of anomalous response of fully clamped beams , 1991 .

[143]  Victor L. Berdichevsky,et al.  Dynamical potential for non-linear vibrations of cantilevered beams , 1995 .

[144]  P. Bar-Yoseph,et al.  Spectral element methods for nonlinear spatio-temporal dynamics of an Euler-Bernoulli beam , 1996 .

[145]  Walter Lacarbonara,et al.  Resonant non-linear normal modes. Part II: activation/orthogonality conditions for shallow structural systems , 2003 .

[146]  A. H. Nayfeh,et al.  Experimental investigation of resonantly forced oscillations of a two-degree-of-freedom structure , 1990 .

[147]  Houjun Kang,et al.  Nonlinear dynamic analysis of cable-stayed arches under primary resonance of cables , 2018 .

[148]  T. S. Sankar,et al.  Bifurcations, catastrophes and chaos in a pre-buckled beam , 1994 .

[149]  Michael F. Shlesinger,et al.  Chaotic and Fractal Dynamics: An Introduction for Applied Scientists and Engineers , 1993 .

[150]  P. Frank Pai,et al.  Experimental Study of Resonant Vibrations of Suspended Steel Cables Using a 3D Motion Analysis System , 2012 .

[151]  Paulo B. Gonçalves,et al.  Oscillations of a beam on a non-linear elastic foundation under periodic loads , 2006 .

[152]  R. Alaggio,et al.  Non-linear dynamics of curved beams. Part 1: Formulation , 2009 .

[153]  Usama H. Hegazy 3:1 Internal resonance of a string-beam coupled system with cubic nonlinearities , 2010 .

[154]  J. Awrejcewicz,et al.  Asymptotic approaches in nonlinear dynamics : new trends and applications , 1998 .

[155]  S. M. Spottswood,et al.  A numerical investigation of snap-through in a shallow arch-like model , 2013 .

[156]  N. Sri Namachchivaya,et al.  Chaotic motion of a shallow arch , 1988 .

[157]  P. S. Symonds,et al.  Extended energy approach to chaotic elastic-plastic response to impulsive loading , 1992 .

[158]  Noel C. Perkins,et al.  Closed-form vibration analysis of sagged cable/mass suspensions , 1992 .

[159]  Jan Awrejcewicz,et al.  Chaos in Structural Mechanics , 2008 .

[160]  Chen Li,et al.  Dynamical Behavior of Nonlinear Viscoelastic Beams , 2000 .

[161]  Philip Holmes,et al.  Introduction to the focus issue: fifty years of chaos: applied and theoretical. , 2012, Chaos.

[162]  Lawrence N. Virgin,et al.  Spatial chaos and localization phenomena in nonlinear elasticity , 1988 .

[163]  Philip Holmes,et al.  Strange Attractors and Chaos in Nonlinear Mechanics , 1983 .

[164]  Philip Holmes,et al.  A magnetoelastic strange attractor , 1979 .

[165]  A. Champneys,et al.  Spatially complex localisation in twisted elastic rods constrained to lie in the plane , 1998 .

[166]  T. Mullin,et al.  Routes to chaos in a magneto-elastic beam , 1997 .

[167]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[168]  Sathya Hanagud,et al.  Chaotic Vibrations of Beams: Numerical Solution of Partial Differential Equations , 1993 .

[169]  A. H. Nayfeh,et al.  Multiple resonances in suspended cables: direct versus reduced-order models , 1999 .

[170]  Fangqi Chen,et al.  Multi-pulse orbits and chaotic dynamics in a nonlinear forced dynamics of suspended cables , 2011 .

[171]  Ülo Lepik,et al.  Dynamic response of elastic-plastic pin-ended beams by Galerkin's method , 1994 .

[172]  Giuseppe Rega,et al.  Theoretical and Experimental Nonlinear Vibrations of Sagged Elastic Cables , 2012 .

[173]  Francis C. Moon,et al.  The fractal dimension of the two-well potential strange attractor , 1985 .

[174]  Francis C. Moon,et al.  Free vibrations of a thin elastica by normal modes , 1992 .

[175]  Earl H. Dowell,et al.  On the Threshold Force for Chaotic Motions for a Forced Buckled Beam , 1988 .

[176]  Ivana Kovacic,et al.  On the influence of a constant force on the appearance of period-doubling bifurcations and chaos in a harmonically excited pure cubic oscillator , 2012 .

[177]  Paul Woafo,et al.  Appearance of horseshoes chaos on a buckled beam controlled by disseminated couple forces , 2011 .

[178]  Anil K. Bajaj,et al.  Amplitude modulated and chaotic dynamics in resonant motion of strings , 1989 .

[179]  F. Moon Experiments on Chaotic Motions of a Forced Nonlinear Oscillator: Strange Attractors , 1980 .

[180]  Giuseppe Rega,et al.  Numerical and geometrical analysis of bifurcation and chaos for an asymmetric elastic nonlinear oscillator , 1995 .

[181]  Q. Bi,et al.  ANALYSIS OF NON-LINEAR DYNAMICS AND BIFURCATIONS OF A SHALLOW ARCH SUBJECTED TO PERIODIC EXCITATION WITH INTERNAL RESONANCE , 2000 .

[182]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[183]  Earl H. Dowell,et al.  The role of higher modes in the chaotic motion of the buckled beam—II , 1996 .

[184]  H. P. Lin,et al.  Free vibration of complex cable/mass systems: theory and experiment , 1995 .

[185]  Marcelo A. Savi,et al.  Transient chaos in an elasto-plastic beam with hardening , 2003 .

[186]  Colin H. Hansen,et al.  NON-LINEAR RESPONSE OF A POST-BUCKLED BEAM SUBJECTED TO A HARMONIC AXIAL EXCITATION , 2000 .

[187]  Alan R. Champneys,et al.  From helix to localized writhing in the torsional post-buckling of elastic rods , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[188]  Albert C. J. Luo,et al.  ANALYTICAL PREDICTIONS OF CHAOS IN A NON-LINEAR ROD , 1999 .

[189]  Ali H. Nayfeh,et al.  Non-linear non-planar oscillations of a cantilever beam under lateral base excitations , 1990 .

[190]  Ali H. Nayfeh,et al.  Three-to-One Internal Resonances in Hinged-Clamped Beams , 1997 .

[191]  Nicholas B. Tufillaro,et al.  Nonlinear and chaotic string vibrations , 1989 .

[192]  Fangqi Chen,et al.  Global bifurcations of a taut string with 1: 2 internal resonance , 2014, Commun. Nonlinear Sci. Numer. Simul..

[193]  Cheng Chang-jun,et al.  Dynamical behavior of nonlinear viscoelastic beams , 2000 .

[194]  Z. C. Feng,et al.  Global bifurcation and chaos in parametrically forced systems with one-one resonance , 1990 .

[195]  Stephen Wiggins,et al.  Global Bifurcations and Chaos , 1988 .

[196]  Raouf A. Ibrahim,et al.  Nonlinear response of an initially buckled beam with 1:1 internal resonance to sinusoidal excitation , 1993 .

[197]  Giuseppe Rega,et al.  Periodic and chaotic motions of an unsymmetrical oscillator in nonlinear structural dynamics , 1991 .

[198]  Ali H. Nayfeh,et al.  Multimode Interactions in Suspended Cables , 2001 .

[199]  Wei Zhang,et al.  Global bifurcations and chaotic dynamics for a string-beam coupled system , 2008 .

[200]  Lianhua Wang,et al.  Nonlinear dynamic behaviors of viscoelastic shallow arches , 2009 .

[201]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[202]  A. M. Abou-Rayan,et al.  Nonlinear response of a parametrically excited buckled beam , 1993 .

[203]  W. Zhang,et al.  Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam , 2009 .

[204]  John Argyris,et al.  Chaotic vibrations of a nonlinear viscoelastic beam , 1996 .

[205]  Takao Yamaguchi,et al.  Experiments on chaotic vibrations of a post-buckled beam with an axial elastic constraint , 2007 .

[206]  Jilong Wang,et al.  Global bifurcations and Chaotic Dynamics in Suspended Cables , 2009, Int. J. Bifurc. Chaos.

[207]  Giuseppe Rega,et al.  Exploiting results of experimental nonlinear dynamics for reduced-order modeling of a suspended cable , 2001 .

[208]  S. H. Lui,et al.  Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts , 2011 .

[209]  Hans Troger,et al.  Dimension Reduction of Dynamical Systems: Methods, Models, Applications , 2005 .

[210]  Roddam Narasimha,et al.  Non-Linear vibration of an elastic string , 1968 .

[211]  Wanda Szemplińska-Stupnicka,et al.  The analytical predictive criteria for chaos and escape in nonlinear oscillators: A survey , 1995 .

[212]  Vincenzo Gattulli,et al.  Localization and veering in the dynamics of cable-stayed bridges , 2007 .

[213]  Yiu-Yin Lee,et al.  Dynamic stability of a curved beam under sinusoidal loading , 2002 .

[214]  Alexander L. Fradkov,et al.  Control of chaos: methods and applications in mechanics , 2006, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[215]  Marcelo A. Savi,et al.  Chaos and Unpredictability in the Vibration of an Elasto-Plastic Beam , 2001 .

[216]  R. Alaggio,et al.  Non-linear dynamics of curved beams. Part 2, numerical analysis and experiments , 2009 .

[217]  Ali H. Nayfeh,et al.  Non-linear interactions in imperfect beams at veering , 2005 .

[218]  S. M. Spottswood,et al.  Characterizing Dynamic Transitions Associated with Snap-Through of Clamped Shallow Arches , 2013 .

[219]  Somchai Chucheepsakul,et al.  Three-dimensional non-linear coupling and dynamic tension in the large-amplitude free vibrations of arbitrarily sagged cables , 2004 .

[220]  Ali H. Nayfeh,et al.  Three-dimensional nonlinear vibrations of composite beams — I. Equations of motion , 1990 .

[221]  Christos T. Georgakis,et al.  Nonlinear dynamics of cable stays. Part 1: sinusoidal cable support excitation , 2005 .

[222]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[223]  A. Maewal Chaos in a Harmonically Excited Elastic Beam , 1986 .

[224]  Stephen Wiggins,et al.  Chaos in the quasiperiodically forced duffing oscillator , 1987 .

[225]  Raouf A. Ibrahim,et al.  Nonlinear vibrations of suspended cables—Part III: Random excitation and interaction with fluid flow , 2004 .

[226]  G. Rega,et al.  Bifurcation structure at 1/3-subharmonic resonance in an asymmetric nonlinear elastic oscillator , 1996 .

[227]  G. Rega,et al.  Two-to-one resonant multi-modal dynamics of horizontal/inclined cables. Part I: Theoretical formulation and model validation , 2007 .

[228]  Jan Awrejcewicz,et al.  Asymptotic approaches in nonlinear dynamics , 1996 .

[229]  Ali H. Nayfeh,et al.  Non-linear non-planar parametric responses of an inextensional beam☆ , 1989 .

[230]  Celso Grebogi,et al.  Multistability, Basin Boundary Structure, and Chaotic Behavior in a Suspension Bridge Model , 2004, Int. J. Bifurc. Chaos.

[231]  Werner Schiehlen,et al.  Effects of a low frequency parametric excitation , 2004 .