Single Versus Two-Loop Full-State Multi-Input Missile Guidance

Two types of autopilot-guidance schemes for linear quadratic multi-input missile systems are compared: single- and two-loop configurations. In both cases, all the states are fed back into the guidance loop. In the two-loop case, the inner autopilot loop is designed separately from the outer guidance loop, whereas in the single-loop scheme, the guidance command is injected directly to the actuator, without a definite autopilot. It is proven that the two schemes achieve the same performance if and only if the number of guidance commands is identical to the number of available controllers. Thus, using the full-state two-loop scheme may be preferred, because it ensures a stabilized airframe whether the guidance loop is active or not. The theorem and guidance laws are illustrated using a dual-control missile model.

[1]  S. Perlis,et al.  Theory of Matrices , 1953 .

[2]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[3]  Ilan Rusnak,et al.  Modern guidance law for high-order autopilot , 1991 .

[4]  Jang Gyu Lee,et al.  Biased PNG law for impact with angular constraint , 1998 .

[5]  E. J. Ohlmeyer,et al.  Integrated Design of Agile Missile Guidance and Autopilot Systems , 2001 .

[6]  I. A. Shkolnikov,et al.  Integrated guidance-control system of a homing interceptor - Sliding mode approach , 2001 .

[7]  Min-Jea Tahk,et al.  Closed-form solutions of optimal guidance with terminal impact angle constraint , 2003, Proceedings of 2003 IEEE Conference on Control Applications, 2003. CCA 2003..

[8]  Ernest J. Ohlmeyer,et al.  Optimal Fixed-Interval Integrated Guidance-Control Laws for Hit-to-Kill Missiles , 2003 .

[9]  Shaul Gutman Superiority of canards in homing missiles , 2003 .

[10]  N. F. Palumbo,et al.  Integrated guidance and control for homing missiles , 2004 .

[11]  Moshe Idan,et al.  Sliding-Mode Control for Integrated Missile Autopilot Guidance , 2004 .

[12]  Min-Jea Tahk,et al.  Optimal Guidance Laws with Terminal Impact Angle Constraint , 2005 .

[13]  Moshe Idan,et al.  Integrated sliding mode autopilot-guidance for dual-control missiles , 2005 .

[14]  T Shima,et al.  End-game guidance laws for dual-control missiles , 2005 .

[15]  Tal Shima,et al.  Bounded differential games guidance law for dual-controlled missiles , 2006, IEEE Transactions on Control Systems Technology.

[16]  T. Shima,et al.  Linear Quadratic Differential Games Guidance Law for Dual Controlled Missiles , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[17]  M. Caramia,et al.  Multi-objective Management in Freight Logistics: Increasing Capacity, Service Level and Safety with Optimization Algorithms , 2008 .

[18]  T. Shima,et al.  Linear Quadratic Guidance Laws for Imposing a Terminal Intercept Angle , 2008 .

[19]  Min-Jea Tahk,et al.  Time-delay control for integrated missile guidance and control , 2011 .

[20]  Tal Shima,et al.  Intercept-Angle Guidance , 2011 .

[21]  A. Belegundu,et al.  Optimization Concepts and Applications in Engineering , 2011 .

[22]  Shaul Gutman,et al.  Guaranteed Miss Distance in Guidance Systems with Bounded Controls and Bounded Noise , 2012 .

[23]  Tal Shima,et al.  Intercept Angle Missile Guidance Under Time Varying Acceleration Bounds , 2012 .

[24]  Ming Wang,et al.  Calculating Complete and Exact Pareto Front for Multiobjective Optimization: A New Deterministic Approach for Discrete Problems , 2013, IEEE Transactions on Cybernetics.

[25]  S. Gutman,et al.  Linear Quadratic Integrated Versus Separated Autopilot-Guidance Design , 2013 .