Normalized pressure: a key variable to assess zebra mussel infestation in pressurized irrigation networks

[1]  P. Anastácio,et al.  Detection and possible elimination of the first recorded population of the zebra mussel (Dreissena polymorpha) in Portugal from a reservoir , 2020 .

[2]  F. Flechoso,et al.  Estimate zebra mussel veliger density from the riverbanks, lotic stretch and reservoir, in two Mediterranean rivers (E Spain) , 2019, Knowledge & Management of Aquatic Ecosystems.

[3]  E. Playán,et al.  Assessing zebra mussel colonization of collective pressurized irrigation networks through pressure measurements and simulations , 2018 .

[4]  José Maria Tarjuelo,et al.  Assessing telemetry and remote control systems for water users associations in Spain , 2018 .

[5]  Jenae M. Olson Dispersal of Zebra Mussels, Dreissena polymorpha, Downstream of an Invaded Reservoir , 2018 .

[6]  Zhaoyin Wang,et al.  Experimental study on the effect of turbulence in pipelines on the mortality of Limnoperna fortunei veligers , 2017 .

[7]  Faizal Mustapha,et al.  A pressure-based method for monitoring leaks in a pipe distribution system: A Review , 2017 .

[8]  A. A. Bezerra,et al.  Absolute roughness calculation by the friction factor calibration using the Alternative Hydraulic Gradient Iterative Method on water distribution networks , 2017 .

[9]  A. Freire Diogo,et al.  Head losses and friction factors of steady turbulent flows in plastic pipes , 2014 .

[10]  D. Strayer,et al.  Biofouling animals in fresh water: biology, impacts, and ecosystem engineering , 2014 .

[11]  Vicenç Puig,et al.  Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks , 2011 .

[12]  Shankar Narasimhan,et al.  Parameter Estimation in Water Distribution Networks , 2010 .

[13]  Joseph W. Zarzynski,et al.  Eradication of colonizing populations of zebra mussels (Dreissena polymorpha) by early detection and SCUBA removal: Lake George, NY , 2009 .

[14]  P. Manach,et al.  Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms , 2008 .

[15]  S. Kandlikar,et al.  Characterization of the effect of surface roughness and texture on fluid flow—past, present, and future , 2006 .

[16]  Christine A. Shoemaker,et al.  Comparison of function approximation, heuristic, and derivative‐based methods for automatic calibration of computationally expensive groundwater bioremediation models , 2005 .

[17]  S. Kandlikar,et al.  Characterization of surface roughness effects on pressure drop in single-phase flow in minichannels , 2005 .

[18]  Robert M. Clark,et al.  Characterizing Pipe Wall Demand: Implications for Water Quality Modeling , 2005 .

[19]  Thomas M. Walski,et al.  Discussion: Modeling for Hydraulic Capacity , 2004 .

[20]  Paul Elliott,et al.  The recent and rapid spread of the zebra mussel (Dreissena polymorpha) in Great Britain , 2004 .

[21]  Joby Boxall,et al.  Modeling for Hydraulic Capacity , 2004 .

[22]  C F Forster,et al.  The decay of chlorine associated with the pipe wall in water distribution systems. , 2002, Water research.

[23]  Werner de Schaetzen,et al.  Optimal sampling design for model calibration using shortest path, genetic and entropy algorithms , 2000 .

[24]  Thomas M. Walski,et al.  Model calibration data: the good, the bad, and the useless , 2000 .

[25]  D. Waller,et al.  Evaluation of Several Chemical Disinfectants for Removing Zebra Mussels from Unionid Mussels , 1998 .

[26]  L. Roberts Zebra Mussel Invasion Threatens U.S. Waters: Damage estimates soar into the billions for the zebra mussel, just one of many invaders entering U.S. waters via ballast water. , 1990, Science.

[27]  L. F. Moody Friction Factors for Pipe Flow , 1944, Journal of Fluids Engineering.