On the Camassa–Holm equation and a direct method of solution. III. N-soliton solutions

In the concluding study (designated III), we modify the direct bilinear transformation method for solving the Camassa–Holm (CH) equation that was set down in part II of this work. We demonstrate its efficacy for finding analytic multisoliton solutions of the equation and give explicit expressions for the first few solitons. It is shown that, at each order N, the N-soliton has a non-standard representation that is characterized by an ‘extra’ parameter. The stucture of this parameter is investigated and a procedure for constructing the general N-soliton solution of the CH equation is presented.

[1]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  M. Ablowitz,et al.  The Inverse scattering transform fourier analysis for nonlinear problems , 1974 .

[3]  R. Hirota Direct Methods in Soliton Theory (非線形現象の取扱いとその物理的課題に関する研究会報告) , 1976 .

[4]  Alan C. Newell,et al.  The Inverse Scattering Transform , 1980 .

[5]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[6]  Athanassios S. Fokas,et al.  Symplectic structures, their B?acklund transformation and hereditary symmetries , 1981 .

[7]  B. Dorizzi,et al.  Painlevé Conjecture Revisited , 1982 .

[8]  和達 三樹 M. J. Ablowitz and H. Segur: Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981, x+425ページ, 23.5×16.5cm, $54.40 (SIAM Studies in Applied Mathematics). , 1982 .

[9]  C. Rogers,et al.  Reciprocal bäcklund transformations of conservation laws , 1982 .

[10]  M. Tabor,et al.  The Painlevé property for partial differential equations , 1983 .

[11]  Yoshimasa Matsuno,et al.  Bilinear Transformation Method , 1984 .

[12]  John Gibbon,et al.  The Painlevé Property and Hirota's Method , 1985 .

[13]  Athanassios S. Fokas,et al.  Hodograph transformations of linearizable partial differential equations , 1989 .

[14]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[15]  Darryl D. Holm,et al.  A New Integrable Shallow Water Equation , 1994 .

[16]  A. Fokas On a class of physically important integrable equations , 1994 .

[17]  C. Gilson,et al.  Factorization and Painleve analysis of a class of nonlinear third-order partial differential equations , 1995 .

[18]  A. Parker On exact solutions of the regularized long‐wave equation: A direct approach to partially integrable equations. I. Solitary wave and solitons , 1995 .

[19]  Peter J. Olver,et al.  Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system , 1996 .

[20]  B. Fuchssteiner Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation , 1996 .

[21]  D. H. Sattinger,et al.  Acoustic Scattering and the Extended Korteweg– de Vries Hierarchy , 1998, solv-int/9901007.

[22]  H. Dai Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod , 1998 .

[23]  H. Dai Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods , 1998 .

[24]  Jeremy Schiff,et al.  The Camassa-Holm equation: a loop group approach , 1997, solv-int/9709010.

[25]  D. Sattinger,et al.  Multi-peakons and a theorem of Stieltjes , 1999, solv-int/9903011.

[26]  J. Schiff,et al.  The Camassa Holm equation: conserved quantities and the initial value problem , 1999, solv-int/9901001.

[27]  A. Parker,et al.  On soliton solutions of the Kaup-Kupershmidt equation. II. “Anomalous” N -soliton solutions , 2000 .

[28]  J. Dye,et al.  An inverse scattering scheme for the regularized long-wave equation , 2000 .

[29]  A. Constantin On the scattering problem for the Camassa-Holm equation , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  Roberto Camassa,et al.  On the initial value problem for a completely integrable shallow water wave equation , 2001 .

[31]  A. Lazenby,et al.  Some concluding comments. , 2001 .

[32]  R. Johnson,et al.  On solutions of the Camassa-Holm equation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Yishen Li,et al.  The multiple-soliton solution of the Camassa-Holm equation , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Allen Parker,et al.  On the Camassa-Holm equation and a direct method of solution I. Bilinear form and solitary waves , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[35]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[36]  Yi-shen Li Some Water Wave Equations and Integrability , 2005 .

[37]  Allen Parker,et al.  On the Camassa–Holm equation and a direct method of solution. II. Soliton solutions , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.