Smoke rings from smoke

We give an algorithm which extracts vortex filaments ("smoke rings") from a given 3D velocity field. Given a filament strength h > 0, an optimal number of vortex filaments, together with their extent and placement, is given by the zero set of a complex valued function over the domain. This function is the global minimizer of a quadratic energy based on a Schrödinger operator. Computationally this amounts to finding the eigenvector belonging to the smallest eigenvalue of a Laplacian type sparse matrix. Turning traditional vector field representations of flows, for example, on a regular grid, into a corresponding set of vortex filaments is useful for visualization, analysis of measured flows, hybrid simulation methods, and sparse representations. To demonstrate our method we give examples from each of these.

[1]  Ellen K. Longmire,et al.  Volumetric velocity measurements of vortex rings from inclined exits , 2010 .

[2]  Snorre H. Christiansen,et al.  A Gauge Invariant Discretization on Simplicial Grids of the Schrödinger Eigenvalue Problem in an Electromagnetic Field , 2011, SIAM J. Numer. Anal..

[3]  Keenan Crane,et al.  Digital geometry processing with discrete exterior calculus , 2013, SIGGRAPH '13.

[4]  Alessandro Curioni,et al.  Billion vortex particle direct numerical simulations of aircraft wakes , 2008 .

[5]  Alexandre J. Chorin,et al.  Hairpin Removal in Vortex Interactions II , 1990 .

[6]  Peter S. Bernard,et al.  Vortex filament simulation of the turbulent coflowing jet , 2009 .

[7]  Markus H. Gross,et al.  Lagrangian vortex sheets for animating fluids , 2012, ACM Trans. Graph..

[8]  Hyeong-Seok Ko,et al.  Stretching and wiggling liquids , 2009, ACM Trans. Graph..

[9]  Keenan Crane,et al.  Globally optimal direction fields , 2013, ACM Trans. Graph..

[10]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[11]  Pradeep Dubey,et al.  Large-scale fluid simulation using velocity-vorticity domain decomposition , 2012, ACM Trans. Graph..

[12]  M. Governale,et al.  Gauge-invariant grid discretization of the Schrödinger equation , 1998 .

[13]  Robert Bridson,et al.  Linear-time smoke animation with vortex sheet meshes , 2012, SCA '12.

[14]  Alexandre J. Chorin Regular ArticleHairpin Removal in Vortex Interactions II , 1993 .

[15]  William T. M. Irvine,et al.  Creation and dynamics of knotted vortices , 2012, Nature Physics.

[16]  G. Hooft Confinement of quarks , 2003 .

[17]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[18]  P S Bernard,et al.  Turbulent flow properties of large-scale vortex systems , 2006, Proceedings of the National Academy of Sciences.

[19]  Ulrich Pinkall,et al.  Filament-based smoke with vortex shedding and variational reconnection , 2010, ACM Trans. Graph..

[20]  Andreas Stathopoulos,et al.  PRIMME: preconditioned iterative multimethod eigensolver—methods and software description , 2010, TOMS.

[21]  Ken Museth,et al.  VDB: High-resolution sparse volumes with dynamic topology , 2013, TOGS.

[22]  Fotis Sotiropoulos,et al.  On the structure of vortex rings from inclined nozzles , 2011, Journal of Fluid Mechanics.

[23]  Mark J. Stock,et al.  Impact of a vortex ring on a density interface using a regularized inviscid vortex sheet method , 2008, J. Comput. Phys..

[24]  MING JIANG,et al.  Detection and Visualization of Vortices , 2005, The Visualization Handbook.

[25]  Fabrice Neyret,et al.  Simulation of smoke based on vortex filament primitives , 2005, SCA '05.