Can Adaptive Conjoint Analysis perform in a Preference Logic Framework?

Research on conjoint analysis/preference aggregation/social choice aggregation is performed by more than forty years by various communities. However, many proposed mathematical models understand preferences as irreflexive, transitive and statical relations while there is human psychology research work questioning these properties as being not enough motivated. This works propose to position the conjoint analysis inside a logical framework allowing for nontransitive and globally inconsistent preferences. Using a preference logics one can define a logic-based utility allowing to obtain an aggregate semantics of the collective choice.

[1]  Eyke Hüllermeier,et al.  Preference Learning , 2005, Künstliche Intell..

[2]  Eyke Hllermeier,et al.  Preference Learning , 2010 .

[3]  Jun Wang Artificial neural networks versus natural neural networks: A connectionist paradigm for preference assessment , 1994, Decis. Support Syst..

[4]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[5]  Jirí Síma,et al.  Neural expert systems , 1995, Neural Networks.

[6]  Daniel Baier,et al.  Conjointanalyse : Methoden - Anwendungen - Praxisbeispiele , 2009 .

[7]  Yoav Shoham,et al.  Nonmonotonic Logics: Meaning and Utility , 1987, IJCAI.

[8]  Padhraic Smyth,et al.  Rule-Based Neural Networks for Classification and Probability Estimation , 1992, Neural Computation.

[9]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[10]  Gregory Piatetsky-Shapiro,et al.  Discovery, Analysis, and Presentation of Strong Rules , 1991, Knowledge Discovery in Databases.

[11]  Giorgos Zacharia,et al.  Generalized robust conjoint estimation , 2005 .

[12]  Daniel Baier,et al.  Logic Based Conjoint Analysis Using the Commuting Quantum Query Language , 2013, Algorithms from and for Nature and Life.

[13]  K. Obermayer,et al.  Supervised learning of preference relations , 1998 .

[14]  R. Likert “Technique for the Measurement of Attitudes, A” , 2022, The SAGE Encyclopedia of Research Design.

[15]  K. Arrow A Difficulty in the Concept of Social Welfare , 1950, Journal of Political Economy.

[16]  Gerald Tesauro,et al.  Connectionist Learning of Expert Preferences by Comparison Training , 1988, NIPS.

[17]  Vithala R. Rao,et al.  Conjoint Measurement- for Quantifying Judgmental Data , 1971 .

[18]  George F. Schumm Transitivity, preference and indifference , 1987 .

[19]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[20]  Padhraic Smyth,et al.  An Information Theoretic Approach to Rule Induction from Databases , 1992, IEEE Trans. Knowl. Data Eng..

[21]  K. Lancaster A New Approach to Consumer Theory , 1966, Journal of Political Economy.

[22]  Eyke Hüllermeier,et al.  Pairwise Preference Learning and Ranking , 2003, ECML.

[23]  Salem Benferhat,et al.  Qualitative choice logic , 2004, Artif. Intell..

[24]  F. B. Vernadat,et al.  Decisions with Multiple Objectives: Preferences and Value Tradeoffs , 1994 .

[25]  Gerd Wagner,et al.  Logic Programming with Strong Negation and Inexact Predicates , 1991, J. Log. Comput..

[26]  Joseph Y. Halpern,et al.  Plausibility measures and default reasoning , 1996, JACM.

[27]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[28]  Daniel Baier Conjoint Measurement in der Innovationsmarktforschung , 2007 .

[29]  Eyke Hüllermeier,et al.  Label ranking by learning pairwise preferences , 2008, Artif. Intell..

[30]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[31]  Rakesh Agarwal,et al.  Fast Algorithms for Mining Association Rules , 1994, VLDB 1994.

[32]  P. Hijek The New Version of the GUHA Procedure ASSOC (Generating Hypotheses on Associations) — Mathematical Foundations , 1984 .

[33]  Ron Sun,et al.  Integrating rules and connectionism for robust commonsense reasoning , 1994, Sixth-generation computer technology series.

[34]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[35]  Stephen I. Gallant,et al.  Connectionist expert systems , 1988, CACM.

[36]  Ingo Schmitt,et al.  QQL: A DB&IR Query Language , 2007, The VLDB Journal.

[37]  Richard M. Johnson Trade-Off Analysis of Consumer Values , 1974 .

[38]  Adrian Giurca,et al.  Adaptive conjoint analysis. Training data: Knowledge or beliefs?: A logical perspective of preferences as beliefs , 2012, 2012 Federated Conference on Computer Science and Information Systems (FedCSIS).

[39]  Manfred K. Warmuth,et al.  The Weighted Majority Algorithm , 1994, Inf. Comput..

[40]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[41]  R. Luce,et al.  Simultaneous conjoint measurement: A new type of fundamental measurement , 1964 .

[42]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[43]  Eyke Hüllermeier,et al.  Non-additive Utility Functions: Choquet Integral Versus Weighted DNF Formulas , 2014 .

[44]  Yoram Singer,et al.  Learning to Order Things , 1997, NIPS.

[45]  S. Grossberg,et al.  RAMBaf: A Connectionist Expert System That Learns by Example , 1987 .

[46]  Adrian Giurca,et al.  Performing conjoint analysis within a logic-based framework , 2011, 2011 Federated Conference on Computer Science and Information Systems (FedCSIS).

[47]  Jehoshua Eliashberg,et al.  Consumer Preference Judgments: An Exposition with Empirical Applications , 1980 .

[48]  Peter Haddawy,et al.  Preference Elicitation via Theory Refinement , 2003, J. Mach. Learn. Res..

[49]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[50]  N. Anderson Foundations of information integration theory , 1981 .