A Time-Transformed Leapfrog Scheme

[1]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[2]  S. Mikkola,et al.  Algorithmic regularization of the few‐body problem , 1999 .

[3]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[4]  S. Mikkola,et al.  Explicit Symplectic Algorithms For Time‐Transformed Hamiltonians , 1999 .

[5]  S. Tremaine,et al.  A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems , 1999, astro-ph/9906322.

[6]  S. Aarseth Star Cluster Simulations: the State of the Art , 1999, astro-ph/9901069.

[7]  G. Quinlan The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.

[8]  Seppo Mikkola,et al.  An implementation ofN-body chain regularization , 1993 .

[9]  William H. Press,et al.  Numerical recipes , 1990 .

[10]  M. Soffel Relativity in astrometry, Celestial mechanics and geodesy , 1989 .

[11]  C. Murray Relativity in astrometry , 1985 .

[12]  K. Zare A regularization of the three body problem , 1974 .

[13]  D. Heggie A global regularisation of the gravitationalN-body problem , 1974 .

[14]  Leon Cohen,et al.  A numerical integration scheme for the N-body gravitational problem , 1973 .

[15]  S. Aarseth Binary evolution in Stellar systems , 1971 .

[16]  J. Stoer,et al.  Numerical treatment of ordinary differential equations by extrapolation methods , 1966 .

[17]  William B. Gragg,et al.  On Extrapolation Algorithms for Ordinary Initial Value Problems , 1965 .

[18]  W. Gragg,et al.  Repeated extrapolation to the limit in the numerical solution of ordinary differential equations , 1964 .