A Time-Transformed Leapfrog Scheme
暂无分享,去创建一个
[1] M. Milosavljevic,et al. Formation of Galactic Nuclei , 2001, astro-ph/0103350.
[2] S. Mikkola,et al. Algorithmic regularization of the few‐body problem , 1999 .
[3] S. Aarseth. From NBODY1 to NBODY6: The Growth of an Industry , 1999 .
[4] S. Mikkola,et al. Explicit Symplectic Algorithms For Time‐Transformed Hamiltonians , 1999 .
[5] S. Tremaine,et al. A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems , 1999, astro-ph/9906322.
[6] S. Aarseth. Star Cluster Simulations: the State of the Art , 1999, astro-ph/9901069.
[7] G. Quinlan. The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.
[8] Seppo Mikkola,et al. An implementation ofN-body chain regularization , 1993 .
[9] William H. Press,et al. Numerical recipes , 1990 .
[10] M. Soffel. Relativity in astrometry, Celestial mechanics and geodesy , 1989 .
[11] C. Murray. Relativity in astrometry , 1985 .
[12] K. Zare. A regularization of the three body problem , 1974 .
[13] D. Heggie. A global regularisation of the gravitationalN-body problem , 1974 .
[14] Leon Cohen,et al. A numerical integration scheme for the N-body gravitational problem , 1973 .
[15] S. Aarseth. Binary evolution in Stellar systems , 1971 .
[16] J. Stoer,et al. Numerical treatment of ordinary differential equations by extrapolation methods , 1966 .
[17] William B. Gragg,et al. On Extrapolation Algorithms for Ordinary Initial Value Problems , 1965 .
[18] W. Gragg,et al. Repeated extrapolation to the limit in the numerical solution of ordinary differential equations , 1964 .