Integration of Regularized l1 Tracking and Instance Segmentation for Video Object Tracking

We introduce a tracking-by-detection method that integrates a deep object detector with a particle filter tracker under the regularization framework where the tracked object is represented by a sparse dictionary. A novel observation model which establishes consensus between the detector and tracker is formulated that enables us to update the dictionary with the guidance of the deep detector. This yields an efficient representation of the object appearance through the video sequence hence improves robustness to occlusion and pose changes. Moreover we propose a new state vector consisting of translation, rotation, scaling and shearing parameters that allows tracking the deformed object bounding boxes hence significantly increases robustness to scale changes. Numerical results reported on challenging VOT2016 and VOT2018 benchmarking data sets demonstrate that the introduced tracker, L1DPF-M, achieves comparable robustness on both data sets while it outperforms state-of-the-art trackers on both data sets where the improvement achieved in success rate at IoU-th=0.5 is 11% and 9%, respectively.

[1]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Zhixun Su,et al.  Robust visual tracking via incremental low-rank features learning , 2014, Neurocomputing.

[3]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Bin Hui,et al.  Fast Online Multi-Pedestrian Tracking via Integrating Motion Model and Deep Appearance Model , 2019, IEEE Access.

[6]  Zhixun Su,et al.  Robust visual tracking using latent subspace projection pursuit , 2014, 2014 IEEE International Conference on Multimedia and Expo (ICME).

[7]  Xiaobo Lu,et al.  SCRM: self-correlated representation model for visual tracking , 2019, Soft Computing.

[8]  Ping Feng,et al.  A hybrid tracking framework based on kernel correlation filtering and particle filtering , 2018, Neurocomputing.

[9]  M. Shah,et al.  Object tracking: A survey , 2006, CSUR.

[10]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[11]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[13]  Junbin Gao,et al.  Linear time Principal Component Pursuit and its extensions using ℓ1 filtering , 2014, Neurocomputing.

[14]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Wei Wu,et al.  High Performance Visual Tracking with Siamese Region Proposal Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[16]  Qin Qin,et al.  Robust visual tracking based on generative and discriminative model collaboration , 2017, Multimedia Tools and Applications.

[17]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[20]  Ming-Sui Lee,et al.  Online object tracking via motion-guided convolutional neural network (MGNet) , 2018, J. Vis. Commun. Image Represent..

[21]  Rynson W. H. Lau,et al.  Deformable Object Tracking With Gated Fusion , 2018, IEEE Transactions on Image Processing.

[22]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[23]  Filiz Gurkan,et al.  Robust object tracking via integration of particle filtering with deep detection , 2019, Digit. Signal Process..

[24]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[25]  Serge J. Belongie,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Simon J. Godsill,et al.  Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking , 2014, Digit. Signal Process..

[29]  Wei Wu,et al.  SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Wenshu Li,et al.  Nonconvex dictionary learning based visual tracking method☆ , 2020, Signal Process..

[31]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[33]  Harish Bhaskar,et al.  Online discriminative dictionary learning for robust object tracking , 2018, Neurocomputing.

[34]  Yu-Wing Tai,et al.  Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[36]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[37]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[38]  Zhenyu He,et al.  The Visual Object Tracking VOT2016 Challenge Results , 2016, ECCV Workshops.

[39]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[40]  Wenguan Wang,et al.  Occlusion-Aware Real-Time Object Tracking , 2017, IEEE Transactions on Multimedia.

[41]  David Zhang,et al.  Deep Location-Specific Tracking , 2017, ACM Multimedia.

[42]  Andrew Zisserman,et al.  Detect to Track and Track to Detect , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[43]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[44]  Zhenming Peng,et al.  A novel reverse sparse model utilizing the spatio-temporal relationship of target templates for object tracking , 2019, Neurocomputing.

[45]  Bohyung Han,et al.  Modeling and Propagating CNNs in a Tree Structure for Visual Tracking , 2016, ArXiv.

[46]  Qingshan Liu,et al.  Robust Visual Tracking via Convolutional Networks Without Training , 2015, IEEE Transactions on Image Processing.

[47]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Zhiyong Li,et al.  Robust Object Tracking via Local Sparse Appearance Model , 2018, IEEE Transactions on Image Processing.

[49]  Bilge Günsel,et al.  Variable rate adaptive color-based particle filter tracking , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[50]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Filiz Gurkan,et al.  Target Aware Visual Object Tracking , 2019, ICIAR.

[52]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[53]  Ling Shao,et al.  Recent advances and trends in visual tracking: A review , 2011, Neurocomputing.

[54]  Bohyung Han,et al.  Learning Multi-domain Convolutional Neural Networks for Visual Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Wami Object Tracking Using L1 Tracker Integrated with a Deep Detector , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[56]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[58]  Changsheng Xu,et al.  Learning Multi-Task Correlation Particle Filters for Visual Tracking , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Vijay Kumar Sharma,et al.  Visual object tracking based on sequential learning of SVM parameter , 2018, Digit. Signal Process..

[60]  Mahdyar Ravanbakhsh,et al.  Weakly Supervised One Shot Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[61]  Filiz Gurkan,et al.  Robust object tracking by interleaving variable rate color particle filtering and deep learning , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[62]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[63]  Michael Felsberg,et al.  The Sixth Visual Object Tracking VOT2018 Challenge Results , 2018, ECCV Workshops.

[64]  Chen Lin,et al.  Robust visual tracking via identifying multi-scale patches , 2018, Multimedia Tools and Applications.

[65]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Lei Han,et al.  Deep learning assisted robust visual tracking with adaptive particle filtering , 2018, Signal Process. Image Commun..

[67]  Guosheng Lin,et al.  Video Object Segmentation and Tracking: A Survey , 2019, ArXiv.

[68]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[69]  Ming-Sui Lee,et al.  Online CNN-based multiple object tracking with enhanced model updates and identity association , 2018, Signal Process. Image Commun..

[70]  Ning Sun,et al.  Robust object tracking based on local region sparse appearance model , 2016, Neurocomputing.