Finding the Constrained Delaunay Triangulation and Constrained Voronoi Diagram of a Simple Polygon in Linear Time

In this paper, we present an $\Theta (n)$ time worst-case deterministic algorithm for finding the constrained Delaunay triangulation and constrained Voronoi diagram of a simple n-sided polygon in the plane. Up to now, only an O(n log n) worst-case deterministic and an O(n) expected time bound have been shown, leaving an O(n) deterministic solution open to conjecture.

[1]  D. T. Lee,et al.  Generalized delaunay triangulation for planar graphs , 1986, Discret. Comput. Geom..

[2]  Francis Y. L. Chin,et al.  Finding the Medial Axis of a Simple Polygon in Linear Time , 1995, ISAAC.

[3]  Leonidas J. Guibas,et al.  A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..

[4]  Lenhart K. Schubert,et al.  An optimal algorithm for constructing the Delaunay triangulation of a set of line segments , 1987, SCG '87.

[5]  D. Eppstein,et al.  MESH GENERATION AND OPTIMAL TRIANGULATION , 1992 .

[6]  David G. Kirkpatrick,et al.  Efficient computation of continuous skeletons , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[7]  Rolf Klein,et al.  Concrete and Abstract Voronoi Diagrams , 1990, Lecture Notes in Computer Science.

[8]  D. T. Lee,et al.  Medial Axis Transformation of a Planar Shape , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Andrzej Lingas,et al.  On Computing the Voronoi Diagram for Restricted Planar Figures , 1991, WADS.

[10]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[11]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[12]  Cao An Wang,et al.  Efficiently updating constrained Delaunay triangulations , 1993, BIT.

[13]  Andrzej Lingas,et al.  A linear-time randomized algorithm for the bounded Voronoi diagram of a simple polygon , 1993, SCG '93.

[14]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..