Influence of the sampling probe on flame temperature, species, residence times and on the interpretation of ion signals of methane/oxygen flames in molecular beam mass spectrometry measurements

[1]  C. Schulz,et al.  Investigation of the combustion of iron pentacarbonyl and the formation of key intermediates in iron oxide synthesis flames , 2021 .

[2]  A. Kempf,et al.  Experimental and numerical investigation of iron-doped flames: FeO formation and impact on flame temperature , 2020 .

[3]  H. Pitsch,et al.  Low- and high-temperature study of n-heptane combustion chemistry , 2020 .

[4]  I. Wlokas,et al.  Experimental and numerical study on the influence of equivalence ratio on key intermediates and silica nanoparticles in flame synthesis , 2020 .

[5]  T. Kasper,et al.  Decomposition Reactions of Fe(CO)5, Fe(C5H5)2, and TTIP as Precursors for the Spray-Flame Synthesis of Nanoparticles in Partial Spray Evaporation at Low Temperatures , 2020 .

[6]  C. Schulz,et al.  Development and evaluation of a chemical kinetics reaction mechanism for tetramethylsilane-doped flames , 2019 .

[7]  A. Parente,et al.  Buoyancy effect in sooting laminar premixed ethylene flame , 2019, Combustion and Flame.

[8]  S. M. Sarathy,et al.  Ion chemistry in premixed rich methane flames , 2019, Combustion and Flame.

[9]  A. Kastengren,et al.  Investigation of sampling-probe distorted temperature fields with X-ray fluorescence spectroscopy , 2019, Proceedings of the Combustion Institute.

[10]  A. Kempf,et al.  Detailed simulation of iron oxide nanoparticle forming flames: Buoyancy and probe effects , 2019, Proceedings of the Combustion Institute.

[11]  P. Oßwald,et al.  The fate of the OH radical in molecular beam sampling experiments , 2019, Proceedings of the Combustion Institute.

[12]  T. Kasper,et al.  Mass Spectrometric Study on the Combustion of Tetramethylsilane and the Formation of Silicon Oxide Clusters in Premixed Laminar Low-Pressure Synthesis Flames. , 2018, The journal of physical chemistry. A.

[13]  P. Oßwald,et al.  Hydrogen-abstraction ratios: A systematic iPEPICO spectroscopic investigation in laminar flames , 2018 .

[14]  A. Kastengren,et al.  2D-imaging of sampling-probe perturbations in laminar premixed flames using Kr X-ray fluorescence , 2017 .

[15]  S. M. Sarathy,et al.  New insights into methane-oxygen ion chemistry , 2017 .

[16]  P. Oßwald,et al.  Insights in m-xylene decomposition under fuel-rich conditions by imaging photoelectron photoion coincidence spectroscopy , 2017 .

[17]  H. Curran,et al.  The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene , 2017 .

[18]  T. Faravelli,et al.  Probe effects in soot sampling from a burner-stabilized stagnation flame , 2016 .

[19]  Zhen Huang,et al.  Mobility size and mass of nascent soot particles in a benchmark premixed ethylene flame , 2015 .

[20]  A. Kempf,et al.  Initial reaction steps during flame synthesis of iron-oxide nanoparticles , 2015 .

[21]  D. Goodwin,et al.  Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. Version 2.2.0 , 2015 .

[22]  A. Kempf,et al.  Investigation of the sampling nozzle effect on laminar flat flames , 2015 .

[23]  F. Egolfopoulos,et al.  Direct numerical simulations of probe effects in low-pressure flame sampling , 2015 .

[24]  P. Oßwald,et al.  Flame structure of a low-pressure laminar premixed and lightly sooting acetylene flame and the effect of ethanol addition , 2015 .

[25]  Stephen G. Taylor,et al.  The effects of applying electric fields on the mass spectrometric sampling of positive and negative ions from a flame at atmospheric pressure , 2014 .

[26]  F. Egolfopoulos,et al.  Advances and challenges in laminar flame experiments and implications for combustion chemistry , 2014 .

[27]  A. Kempf,et al.  Buoyancy induced limits for nanoparticle synthesis experiments in horizontal premixed low-pressure flat-flame reactors , 2013 .

[28]  D. Knyazkov,et al.  Experimental and numerical study of probe-induced perturbations of the flame structure , 2013 .

[29]  P. R. Westmoreland,et al.  Flame chemistry of tetrahydropyran as a model heteroatomic biofuel , 2013 .

[30]  A. Hayhurst Mass spectrometric sampling of a flame , 2012 .

[31]  F. Mauss,et al.  Combustion Chemistry of the Butane Isomers in Premixed Low-Pressure Flames , 2011 .

[32]  P. R. Westmoreland,et al.  Combustion chemistry of the propanol isomers ― investigated by electron ionization and VUV-photoionization molecular-beam mass spectrometry , 2009 .

[33]  P. Oßwald,et al.  Sampling Probe Influences on Temperature and Species Concentrations in Molecular Beam Mass Spectroscopic Investigations of Flat Premixed Low-pressure Flames , 2009 .

[34]  Nils Hansen,et al.  Isomer-specific fuel destruction pathways in rich flames of methyl acetate and ethyl formate and consequences for the combustion chemistry of esters. , 2007, The journal of physical chemistry. A.

[35]  N. Bahlawane,et al.  Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements. , 2007, The Review of scientific instruments.

[36]  J. Prager,et al.  Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames , 2007 .

[37]  H. Wagner,et al.  Formation of flame ions, clusters, nanotubes, and soot in hydrocarbon flames , 2006 .

[38]  A. Hayhurst,et al.  The stabilities of the gas-phase ions Li+·H2O, Li+·(H2O)2 and Li+·CO as measured by mass-spectrometric sampling of fuel-rich flames of C2H2 + O2 , 2003 .

[39]  Stephen G. Taylor,et al.  The ions in fuel-rich hydrogen flames with added ammonia: measurements of the proton affinity of NH3 and the enthalpy of monohydration of NH4+ , 2002 .

[40]  Burak Atakan,et al.  Effects of a sampling quartz nozzle on the flame structure of a fuel-rich low-pressure propene flame , 2000 .

[41]  K. Homann,et al.  Large molecules, radicals, ions, and small soot particles in fuel-rich hydrocarbon flames: Part I: positive ions of polycyclic aromatic hydrocarbons(PAH) in low-pressure premixed flames of acetylene and oxygen , 1999 .

[42]  Alexander B. Fialkov,et al.  Investigations on ions in flames , 1997 .

[43]  K. Becker,et al.  Electron impact ionization of ( x = 1 - 4) , 1996 .

[44]  K. Homann,et al.  Ions and charged soot particles in hydrocarbon flames. 2. Positive aliphatic and aromatic ions in ethyne/oxygen flames , 1990 .

[45]  D. Chandler,et al.  An experimental study of probe distortions to the structure of one-dimensional flames☆ , 1986 .

[46]  O. Korobeinichev,et al.  Substantiation of the probe mass-spectrometric method for studying the structure of flames with narrow combustion zones , 1985 .

[47]  D. Olson,et al.  Ionization and soot formation in premixed flames , 1985 .

[48]  P. Kebarle,et al.  Thermodynamics and kinetics of the gas-phase reactions H3O+(H2O)n-1 + water = H3O+(H2O)n , 1982 .

[49]  N. Burdett,et al.  Hydration of gas-phase ions and the measurement of boundary-layer cooling during flame sampling into a mass spectrometer , 1982 .

[50]  N. Burdett,et al.  Mass spectrometric sampling of ions from atmospheric pressure flames. IV. Scattering processes in molecular beams from supersonic expansions , 1979 .

[51]  D. Bohme,et al.  Detailed ion chemistry in methaneoxygen flames. II. Negative ions , 1979 .

[52]  N. Burdett,et al.  Kinetics of formation and removal of atomic halogen ions X- by HX + e ⇄ H + X- in atmospheric pressure flames for chlorine, bromine and iodine , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[53]  D. Kittelson,et al.  Mass spectrometric sampling of ions from atmospheric pressure flames—III: Boundary layer and other cooling of the sample , 1977 .

[54]  D. Kittelson,et al.  Mass spectrometric sampling of ions from atmospheric pressure flames-II: Aerodynamic disturbance of a flame by the sampling system , 1977 .

[55]  C. Morley Sampling of ions from flames , 1974 .

[56]  C. P. Lazzara,et al.  Molecular beam mass spectrometry applied to determining the kinetics of reactions in flames. I. Empirical characterization of flame perturbation by molecular beam sampling probes , 1974 .

[57]  A. N. Hayhurst,et al.  The occurrence of chemical reactions in supersonic expansions of a gas into a vacuum and its relation to mass spectrometric sampling , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[58]  M. Arshadi,et al.  Solvation of the hydrogen ion by water molecules in the gas phase. Heats and entropies of solvation of individual reactions. H+(H2O)n-1 + H2O .fwdarw. H+(H2O)n , 1967 .

[59]  J. G. Collins,et al.  Competitive solvation of the hydrogen ion by water and methanol molecules studied in the gas phase , 1967 .