Spectroscopy of YO from first principles.

We report an ab initio study on the spectroscopy of the open-shell diatomic molecule yttrium oxide, YO. The study considers the six lowest doublet states, X2Σ+, A'2Δ, A2Π, B2Σ+, C2Π, D2Σ+, and a few higher-lying quartet states using high levels of electronic structure theory and accurate nuclear motion calculations. The coupled cluster singles, doubles, and perturbative triples, CCSD(T), and multireference configuration interaction (MRCI) methods are employed in conjunction with a relativistic pseudopotential on the yttrium atom and a series of correlation-consistent basis sets ranging in size from triple-ζ to quintuple-ζ quality. Core-valence correlation effects are taken into account and complete basis set limit extrapolation is performed for CCSD(T). Spin-orbit coupling is included through the use of both MRCI state-interaction with spin-orbit (SI-SO) approach and four-component relativistic equation-of-motion CCSD calculations. Using the ab initio data for bond lengths ranging from 1.0 to 2.5 Å, we compute 6 potential energy, 12 spin-orbit, 8 electronic angular momentum, 6 electric dipole moment and 12 transition dipole moment (4 parallel and 8 perpendicular) curves which provide a complete description of the spectroscopy of the system of six lowest doublet states. The Duo nuclear motion program is used to solve the coupled nuclear motion Schrödinger equation for these six electronic states. The spectra of 89Y16O simulated for different temperatures are compared with several available high resolution experimental studies; good agreement is found once minor adjustments are made to the electronic excitation energies.

[1]  Laura K. McKemmish,et al.  ExoMol molecular line lists – XXXIII. The spectrum of Titanium Oxide , 2019, Monthly Notices of the Royal Astronomical Society.

[2]  J. Tennyson,et al.  ExoMol line lists – XXXII. The rovibronic spectrum of MgO , 2019, Monthly Notices of the Royal Astronomical Society.

[3]  O. Mutlu,et al.  SPECTR: Formal Supervisory Control and Coordination for Many-core Systems Resource Management , 2018, ASPLOS.

[4]  L. Visscher,et al.  Equation-of-motion coupled-cluster theory based on the 4-component Dirac-Coulomb(-Gaunt) Hamiltonian. Energies for single electron detachment, attachment, and electronically excited states. , 2018, The Journal of chemical physics.

[5]  Jun Ye,et al.  3D Magneto-Optical Trap of Yttrium Monoxide. , 2018, Physical review letters.

[6]  J. Tennyson,et al.  ExoMol line lists XXXI: spectroscopy of lowest eights electronic states of C2 , 2018, Monthly Notices of the Royal Astronomical Society.

[7]  J. Tennyson,et al.  EXOCROSS: a general program for generating spectra from molecular line lists , 2018, Astronomy & Astrophysics.

[8]  Sergei N. Yurchenko,et al.  Total internal partition sums for 166 isotopologues of 51 molecules important in planetary atmospheres: Application to HITRAN2016 and beyond , 2017 .

[9]  N. Madhusudhan,et al.  genesis: new self-consistent models of exoplanetary spectra , 2017, 1706.02302.

[10]  B. Suo,et al.  High-resolution electronic spectra of yttrium oxide (YO): The D2Σ+-X2Σ+ transition. , 2017, The Journal of chemical physics.

[11]  Laura K. McKemmish,et al.  ExoMol line lists – XVIII. The high-temperature spectrum of VO , 2016, 1609.06120.

[12]  Laura K. McKemmish,et al.  Ab initio calculations to support accurate modelling of the rovibronic spectroscopy calculations of vanadium monoxide (VO) , 2016, 1609.05073.

[13]  Jonathan Tennyson,et al.  The ExoMol project: Software for computing large molecular line lists , 2016, 1607.01220.

[14]  J. Tennyson,et al.  The ab initio calculation of spectra of open shell diatomic molecules , 2016, 1605.02301.

[15]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the light elements H–Ar , 2016, Theoretical Chemistry Accounts.

[16]  Ahmed F. Al-Refaie,et al.  The ExoMol database: Molecular line lists for exoplanet and other hot atmospheres , 2016, 1603.05890.

[17]  P. Barklem,et al.  Partition functions and equilibrium constants for diatomic molecules and atoms of astrophysical interest , 2016, 1602.03304.

[18]  J. Tennyson,et al.  Radiative lifetimes and cooling functions for astrophysically important molecules , 2016, 1601.07997.

[19]  Sergei N. Yurchenko,et al.  Duo: A general program for calculating spectra of diatomic molecules , 2016, Comput. Phys. Commun..

[20]  S. Manivasagam,et al.  Multireference Character for 4d Transition Metal-Containing Molecules. , 2015, Journal of chemical theory and computation.

[21]  J. Bohn,et al.  Shielding Σ2 ultracold dipolar molecular collisions with electric fields , 2015, 1510.06601.

[22]  J. Tennyson,et al.  The calculated rovibronic spectrum of scandium hydride, ScH , 2015, 1504.04051.

[23]  Jun Ye,et al.  Prospects for a narrow line MOT in YO , 2015, 1501.05326.

[24]  Jun Ye,et al.  Rotational State Microwave Mixing for Laser Cooling of Complex Diatomic Molecules. , 2015, Physical review letters.

[25]  J. Tennyson,et al.  Hybrid variational–perturbation method for calculating ro-vibrational energy levels of polyatomic molecules , 2014, 1411.6098.

[26]  C. Hill,et al.  Study of the electronic and rovibronic structure of the X ²Σ⁺, A ²Π, and B ²Σ⁺ states of AlO. , 2014, The Journal of chemical physics.

[27]  B. Stuhl,et al.  2D Magneto-optical trapping of diatomic molecules. , 2012, Physical review letters.

[28]  J. Tennyson,et al.  ExoMol: molecular line lists for exoplanet and other atmospheres , 2012, 1204.0124.

[29]  Nathan J. DeYonker,et al.  Multireference Character for 3d Transition-Metal-Containing Molecules. , 2012, Journal of chemical theory and computation.

[30]  Toru Shiozaki,et al.  Communication: extended multi-state complete active space second-order perturbation theory: energy and nuclear gradients. , 2011, The Journal of chemical physics.

[31]  Jan M. L. Martin,et al.  W4-11: A high-confidence benchmark dataset for computational thermochemistry derived from first-principles W4 data , 2011 .

[32]  P. Sriramachandran,et al.  Spectroscopic parameters for certain band systems of astrophysically important molecule: Yttrium oxide , 2011 .

[33]  Anthony Papagiannis Intern , 2010, BMJ : British Medical Journal.

[34]  P. Bernath Molecular astronomy of cool stars and sub-stellar objects , 2009, 0912.5085.

[35]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[36]  M. Gromadzki,et al.  KECK/HIRES SPECTROSCOPY OF V838 MONOCEROTIS IN OCTOBER 2005 , 2008, 0812.4213.

[37]  F. C. Janna,et al.  Gas Temperature Measurements in High Concentration Solar Furnace Environments: Evidence of Nonequilibrium Effects , 2007 .

[38]  H. Schaefer,et al.  Coupled cluster investigation on the low-lying electronic states of CuCN and CuNC and the ground state barrier to isomerization. , 2007, The Journal of chemical physics.

[39]  B. Granier,et al.  Measurements of vibrational and rotational temperatures of YO molecule by emission and absorption spectroscopy in a solar process. Evidence of a non-equilibrium situation near the vaporizing surface , 2007 .

[40]  Michael Dolg,et al.  Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. , 2007, The Journal of chemical physics.

[41]  E. Barsukova,et al.  Comparative spectral analysis of the peculiar red novae V838 Mon and V4332 Sgr in quiescence after their outbursts , 2007 .

[42]  B. Ruscic,et al.  W4 theory for computational thermochemistry: In pursuit of confident sub-kJ/mol predictions. , 2006, The Journal of chemical physics.

[43]  T. Sekine,et al.  Laser ablation of yttrium-containing oxides in various ambient gases studied by time-resolved emission spectroscopy , 2006 .

[44]  H. Schaefer,et al.  The low-lying electronic states of nickel cyanide and isocyanide: A theoretical investigation. , 2006, The Journal of chemical physics.

[45]  B. Granier,et al.  Temperature of the gas phase in solar processes from simulation of the YO fluorescence spectra for A2Π1/2-X2Σ+, A2Π3/2-X2Σ+, B2Σ+-X2Σ+ systems , 2005 .

[46]  Amir Karton,et al.  Comment on: “Estimating the Hartree–Fock limit from finite basis set calculations” [Jensen F (2005) Theor Chem Acc 113:267] , 2005, physics/0509216.

[47]  K. Peterson,et al.  An ab initio study of the lowest electronic states of yttrium dicarbide, YC2. , 2005, The Journal of chemical physics.

[48]  H. Schaefer,et al.  The low-lying electronic excited states of NiCO. , 2004, The Journal of chemical physics.

[49]  T. Steimle,et al.  The permanent electric dipole moments and magnetic hyperfine interaction in the A2Π state of yttrium monosulfide , 2003 .

[50]  B. Granier,et al.  Solar induced fluorescence spectra of YO: Measurements and simulation of the A2Π3/2−X2Σ+ band system , 2003 .

[51]  John F. Stanton,et al.  A Discussion of Some Problems Associated with the Quantum Mechanical Treatment of Open‐Shell Molecules , 2003 .

[52]  Kirk A. Peterson,et al.  Accurate correlation consistent basis sets for molecular core–valence correlation effects: The second row atoms Al–Ar, and the first row atoms B–Ne revisited , 2002 .

[53]  B. Granier,et al.  Solar induced fluorescence of gaseous yttrium monoxide , 2002 .

[54]  T. Steimle,et al.  The permanent electric dipole moments for the A 2Π and B 2Σ+ states and the hyperfine interactions in the A 2Π state of lanthanum monoxide, LaO , 2002 .

[55]  P. Knowles,et al.  Spin-orbit matrix elements for internally contracted multireference configuration interaction wavefunctions , 2000 .

[56]  Vergés,et al.  The Infrared A(2)Pi --> A' (2)Delta Transition of LaO. , 2000, Journal of molecular spectroscopy.

[57]  Ernest R. Davidson,et al.  Electron spin resonance studies of 45Sc17O, 89Y17O, and 139La17O in rare gas matrices: Comparison with ab initio electronic structure and nuclear hyperfine calculations , 1999 .

[58]  Curtis L. Janssen,et al.  New diagnostics for coupled-cluster and Møller–Plesset perturbation theory , 1998 .

[59]  R. R. Reddy,et al.  RKRV Potential Energy Curves, Dissociation Energies, γ-Centroids And Franck-Condon Factors Of YO, CrO, BN, ScO, SiO And AlO Molecules , 1998 .

[60]  Lucas Visscher,et al.  Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction , 1997 .

[61]  Jan M. L. Martin Ab initio total atomization energies of small molecules — towards the basis set limit , 1996 .

[62]  Kirk A. Peterson,et al.  Benchmark calculations with correlated molecular wave functions. IV. The classical barrier height of the H+H2→H2+H reaction , 1994 .

[63]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[64]  Hans-Joachim Werner,et al.  Coupled cluster theory for high spin, open shell reference wave functions , 1993 .

[65]  D. Fried,et al.  The yttrium oxide chemiluminescence from the 308 nm excimer laser ablation of YBa2Cu3O7−X, Y2O3, and YCl3 , 1993 .

[66]  Jürgen Gauss,et al.  Coupled‐cluster methods with noniterative triple excitations for restricted open‐shell Hartree–Fock and other general single determinant reference functions. Energies and analytical gradients , 1993 .

[67]  C. Otis,et al.  Internal energy distributions of laser ablated species from YBa2Cu3O7−δ , 1993 .

[68]  Hans-Joachim Werner,et al.  Internally contracted multiconfiguration-reference configuration interaction calculations for excited states , 1992 .

[69]  B. Simard,et al.  On the A′2Δ-X2Σ+(0,0) band of YO☆ , 1992 .

[70]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[71]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[72]  N. S. Nogar,et al.  Laser ablation of Y2O3 in an oxygen atmosphere , 1991 .

[73]  G. T. Fraser,et al.  Pulsed‐nozzle Fourier‐transform microwave spectroscopy of laser‐vaporized metal oxides: Rotational spectra and electric dipole moments of YO, LaO, ZrO, and HfO , 1990 .

[74]  T. Steimle,et al.  A molecular beam‐optical Stark study of the A 2Π–X 2Σ band system of YO , 1990 .

[75]  P. Knowles,et al.  An efficient internally contracted multiconfiguration–reference configuration interaction method , 1988 .

[76]  J. Hoeft,et al.  The microwave rotational spectrum of X 2Σ LaO , 1988 .

[77]  S. Langhoff,et al.  Theoretical studies of the monoxides and monosulfides of Y, Zr, and Nb , 1988 .

[78]  P. Knowles,et al.  An efficient method for the evaluation of coupling coefficients in configuration interaction calculations , 1988 .

[79]  W. J. Childs,et al.  Fine and magnetic hyperfine structure in the A 2Π and X 2∑+ states of yttrium monoxide , 1988 .

[80]  T. Steimle,et al.  Fine and hyperfine structure in the X2Σ+ state of gas-phase yttrium monoxide , 1987 .

[81]  S. Langhoff,et al.  Theoretical studies of the low-lying states of ScO, ScS, VO, and VS , 1986 .

[82]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[83]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[84]  C. Alkemade,et al.  Determination of rates of collision-induced vibrational and intramultiplet transitions for YO(A2II) molecules in Ar- and N2-diluted flames , 1984 .

[85]  P. Murty Pi Gruis: Molecular identifications and spectral classification , 1983 .

[86]  A. Bernard,et al.  The emission spectrum of yttrium monoxide - New rotational and vibrational results on the A2Pi-X2Sigma+ system , 1983 .

[87]  S. P. Bagare,et al.  Intensity distribution in theA2Π –X2Σ+ system of Yttrium monoxide , 1982 .

[88]  A. Bernard,et al.  Further analysis of the B2Sigma/plus/-X2Sigma/plus/ system of the YO molecule , 1980 .

[89]  K. Liu,et al.  Laser fluorescence studies of carbonyl and carboxylic acid oxygen atom abstraction reactions by Group 3B atoms , 1979 .

[90]  C. Linton Photoluminescence of the A2Π-X2Σ+ system of the yttrium oxide molecule , 1978 .

[91]  Kuan-Yu Liu,et al.  Laser fluorescence detection of nascent product state distributions in reactions of Sc and Y with O2, NO, and SO2 , 1977 .

[92]  J. Gole,et al.  Chemiluminescence spectra of ScO and YO: Observation and analysis of the A′ 2Δ–X 2Σ+ band system , 1976 .

[93]  D. Manos,et al.  Crossed molecular beam study of chemiluminescent reactions of Group IIIb atoms with O2 , 1975 .

[94]  R. J. Ackermann,et al.  Thermodynamic properties of ZrO (g) and HfO (g); a critical examination of isomolecular oxygen‐exchange reactions , 1974 .

[95]  J. Féménias,et al.  Analyse Rotationnelle de la Bande (0,0) du Système Orange de ScO , 1972 .

[96]  P. H. Kasai,et al.  Ground States and Hyperfine‐Structure Separations of ScO, YO, and LaO from ESR Spectra at 4°K , 1965 .

[97]  J. L. Dunham The Energy Levels of a Rotating Vibrator , 1932 .

[98]  C. Western PGOPHER: A program for simulating rotational, vibrational and electronic spectra , 2017 .

[99]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4d elements Y–Cd , 2007 .

[100]  A. Cheung,et al.  Cavity ring down absorption spectroscopy of the B2Σ+–X2Σ+ transition of YO , 2005 .

[101]  B. Granier,et al.  Solar induced fluorescence of YO: gas phase temperature measurements in solar processes , 2005 .

[102]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[103]  T. Steimle,et al.  A microwave-optical double-resonance study of gas-phase yttrium monoxide , 1986 .

[104]  C. Alkemade,et al.  Fluorescence spectra of laser-excited YO molecules in a H2O2Ar flame , 1980 .

[105]  R. Bacis,et al.  Fourier Transform Spectroscopy: Extensive Analysis of the A2II -> X2E+ and B2E+ -> X2E+ Systems of Yttrium Oxide , 1979 .

[106]  J. Gole,et al.  Single collision chemiluminescence studies of scandium and yttrium oxidation with O2, NO2, N2O and O3 , 1977 .

[107]  R. W. Nicholls,et al.  A High Resolution Study of the Shock Excited Spectrum of Yttrium Oxide , 1977 .

[108]  M. Vardya PARTITION FUNCTIONS AND EQUILIBRIUM CONSTANTS FOR ScO, YO, AND LaO. , 1970 .

[109]  A. G. Gaydon Dissociation energies and spectra of diatomic molecules , 1953 .