An in-plane, variable optical attenuator using a fluid-based tunable reflective interface

We introduce an optofluidic based variable optical attenuator with high stability, high reliability, simple and inexpensive fabrication, and an attenuation performance comparable to commercial devices. A standard soft lithography process produces a single-layered polydimethylsiloxane (PDMS) microfluidic device integrated with optical fibers. By altering the refractive index of the fluid within the microchannel, we can control the reflectivity of the fluid/PDMS interface and thus achieve variable attenuation. Theoretical calculations are conducted based on Snell’s law of refraction and the Fresnel equations of reflection, and the calculated attenuation response matches well with experimental data.

[1]  John A. Rogers,et al.  Digitally tunable microfluidic optical fiber devices , 2003 .

[2]  Alexandra Boltasseva,et al.  Compact plasmonic variable optical attenuator. , 2008, Optics express.

[3]  M. Nguyen,et al.  Prediction of viscosity of glucose and calcium chloride solutions , 2004 .

[4]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[5]  D. Uttamchandani,et al.  MEMS variable optical attenuator with vernier latching mechanism , 2006, IEEE Photonics Technology Letters.

[6]  C. Amano,et al.  Liquid crystal variable optical attenuators integrated on planar lightwave circuits , 2001, IEEE Photonics Technology Letters.

[7]  G. Whitesides,et al.  Dynamic control of liquid-core/liquid-cladding optical waveguides , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[8]  M. Lipson,et al.  Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides , 2009, Nature.

[9]  Wei Wang,et al.  Multimode-interference-type thermo-optic variable optical attenuator with a response frequency of 10 kHz , 2003 .

[10]  Lin Zhu,et al.  Integrated microfluidic variable optical attenuator. , 2005, Optics express.

[11]  Different curvatures of tunable liquid microlens via the control of laminar flow rate , 2008 .

[12]  W. G. Wu,et al.  Flexible integration of optical switch with optical power splitting and attenuating functions for optical fiber-based networking applications , 2008 .

[13]  Tony Jun Huang,et al.  Hydrodynamically tunable optofluidic cylindrical microlens. , 2007, Lab on a chip.

[14]  George M. Whitesides,et al.  Integrated fluorescent light source for optofluidic applications , 2005 .

[15]  Demetri Psaltis,et al.  A microfluidic 2×2 optical switch , 2004 .

[16]  Jinjie Shi,et al.  Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. , 2009, Lab on a chip.

[17]  Xudong Fan,et al.  Optofluidic ring resonator based dye laser , 2007 .

[18]  G. J. Davies,et al.  Sidewall roughness characterization and comparison between silicon and SU-8 microcomponents , 2007 .

[19]  Ai Qun Liu,et al.  A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip , 2008 .

[20]  M. Teich,et al.  Fundamentals of Photonics , 1991 .

[21]  An on-chip liquid tunable grating using multiphase droplet microfluidics , 2008 .

[22]  John A. Rogers,et al.  Tunable devices based on dynamic positioning of micro-fluids in micro-structured optical fiber , 2002 .

[23]  Yong Hyub Won,et al.  Polymer waveguide variable optical attenuator and its reliability , 2004 .