Spatial light modulators in fluorescence microscopy

Spatial light modulators (SLMs) are becoming increasingly important in optical microscopy. These reflective or transmissive devices, based on microdisplays using liquid crystal or micromirror array technology, are used to achieve a variety of useful effects and imaging modes. When placed in an image plane, SLMs can be used to create arbitrary, computer controlled masks. These masks can then be placed in the microscope's illumination pathway, detection pathway, or both. The result is a programmable array microscope (PAM): an optical sectioning microscope with improved speed, sensitivity, and flexibility compared to conventional confocal laser scanning microscopes (CLSMs). Another possibility is structured illumination microscopy (SIM), in which SLMs are used only for illumination. Both high speed optical sectioning and live cell, 3D superresolution can also be achieved via SIM. When placed in an aperture plane, SLMs can manipulate the reflected wavefront. This allows for applications such as adaptive optics.

[1]  Patrick J. Smith,et al.  Programmable array microscope demonstrator: application of a ferroelectric liquid crystal SLM , 2000, Photonics West - Biomedical Optics.

[2]  R. Heintzmann Band Limit and Appropriate Sampling in Microscopy , 2005 .

[3]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[4]  P. Lenne,et al.  Highly flexible whole-field sectioning microscope with liquid-crystal light modulator , 2006 .

[5]  Detlev Schild,et al.  Resolution in the ApoTome and the confocal laser scanning microscope: comparison. , 2009, Journal of biomedical optics.

[6]  Quentin S. Hanley Masking, Photobleaching, and Spreading Effects in Hadamard Transform Imaging and Spectroscopy Systems , 2001 .

[7]  E. Stelzer The Intermediate Optical System of Laser-Scanning Confocal Microscopes , 2006 .

[8]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[9]  T. Jovin,et al.  Spectrally Resolved Fluorescence Lifetime Imaging Microscopy , 2002 .

[10]  A. Stemmer,et al.  Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator. , 2008, Optics letters.

[11]  O. Mandula,et al.  Structured illumination microscopy of a living cell , 2009, 2011 International Quantum Electronics Conference (IQEC) and Conference on Lasers and Electro-Optics (CLEO) Pacific Rim incorporating the Australasian Conference on Optics, Lasers and Spectroscopy and the Australian Conference on Optical Fibre Technology.

[12]  M. Liang,et al.  Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination. , 1997, Optics letters.

[13]  R. Heintzmann Handbook of biological confocal microscopy , 2006 .

[14]  I. Young,et al.  3D restoration with multiple images acquired by a modified conventional microscope , 2004, Microscopy research and technique.

[15]  E. Manders,et al.  Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging , 2007, Nature Biotechnology.

[16]  Yi Chin Fang,et al.  High definition DLP zoom projector lens design with TIR prism for high definition television (HDTV) , 2006, International Optical Design Conference.

[17]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[18]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[19]  T. Jovin,et al.  Theory of confocal fluorescence imaging in the programmable array microscope (PAM) , 1998 .

[20]  M. Whelan,et al.  Global analysis of microscopic fluorescence lifetime images using spectral segmentation and a digital micromirror spatial illuminator. , 2008, Journal of biomedical optics.

[21]  Ian T Young,et al.  Selective photoreactions in a programmable array microscope (PAM): Photoinitiated polymerization, photodecaging, and photochromic conversion , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[22]  R. Heintzmann,et al.  High-resolution image reconstruction in fluorescence microscopy with patterned excitation. , 2006, Applied optics.

[23]  M. Kozubek,et al.  Efficient real-time confocal microscopy with white light sources , 1996, Nature.

[24]  Peter J. Verveer,et al.  Optical Sectioning Fluorescence Spectroscopy in a Programmable Array Microscope , 1998 .

[25]  T. Jovin,et al.  An optical sectioning programmable array microscope implemented with a digital micromirror device , 1999, Journal of microscopy.

[26]  S. Haase OMX - a novel high speed and high resolution microscope and its application to nuclear and chromosomal structure analysis , 2008 .

[27]  T. Wilson,et al.  Adaptive optics for structured illumination microscopy. , 2008, Optics express.

[28]  D. Grier A revolution in optical manipulation , 2003, Nature.

[29]  M. D. Egger,et al.  New Reflected-Light Microscope for Viewing Unstained Brain and Ganglion Cells , 1967, Science.

[30]  R. Heintzmann,et al.  Saturated patterned excitation microscopy--a concept for optical resolution improvement. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[31]  Calum MacAulay,et al.  Improvements to quantitative microscopy through the use of digital micromirror devices , 2000, Photonics West - Biomedical Optics.

[32]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[33]  Eithne M. McCabe,et al.  Programmable array microscope employing two ferroelectric liquid crystal spatial light modulators , 2001, SPIE BiOS.

[34]  Brendon O. Watson,et al.  SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation with Spatial Light Modulators , 2008, Frontiers in neural circuits.

[35]  Ralf Wolleschensky,et al.  High-speed confocal fluorescence imaging with a novel line scanning microscope. , 2006, Journal of biomedical optics.

[36]  Marc Levoy,et al.  Synthetic aperture confocal imaging , 2004, SIGGRAPH 2004.

[37]  J. Siegel,et al.  Time‐domain whole‐field fluorescence lifetime imaging with optical sectioning , 2001, Journal of microscopy.

[38]  Peter Kohl,et al.  Temporal Pixel Multiplexing for simultaneous high-speed high-resolution imaging , 2010, Nature Methods.

[39]  A. Miyawaki,et al.  Differential Ras activation between caveolae/raft and non-raft microdomains. , 2007, Cell structure and function.

[40]  Alan Boyde,et al.  Tandem scanning reflected light microscopy: a new method for in vitro assessment of dental operative procedures and restorations , 1987 .

[41]  Amanda J Wright,et al.  Adaptive optics for deeper imaging of biological samples. , 2009, Current opinion in biotechnology.

[42]  B. Barisas,et al.  FRAP and Photoconversion in Multiple Arbitrary Regions of Interest Using a Programmable Array Microscope (PAM) , 2009 .

[43]  A. Stemmer,et al.  True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  A. Boccara,et al.  Optimization and characterization of a structured illumination microscope. , 2007, Optics express.

[45]  Tim N. Ford,et al.  Fluorescence endomicroscopy with structured illumination. , 2008, Optics express.

[46]  Y. Fainman,et al.  3D quantitative imaging of the microvasculature with the Texas Instruments Digital Micromirror Device , 2001, SPIE Optics + Photonics.

[47]  Johannes Courtial,et al.  3D interferometric optical tweezers using a single spatial light modulator. , 2005, Optics express.

[48]  Peter J. Verveer,et al.  Spectral Imaging in a Programmable Array Microscope by Hadamard Transform Fluorescence Spectroscopy , 1999 .

[49]  R Richards-Kortum,et al.  Fiber-optic confocal microscopy using a spatial light modulator. , 2000, Optics letters.

[50]  S. Aaronson,et al.  In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. , 1973, Journal of the National Cancer Institute.

[51]  Takatoshi Tsujimura,et al.  Wiley‐SID Series in Display Technology , 2012 .

[52]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[54]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[55]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[56]  T. Wilson,et al.  Method of obtaining optical sectioning by using structured light in a conventional microscope. , 1997, Optics letters.

[57]  R. Heintzmann,et al.  Ensemble and single particle photophysical properties (two‐photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells , 2004, Microscopy research and technique.

[58]  Eric Betzig,et al.  Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues , 2010, Nature Methods.

[59]  Patrick Degenaar,et al.  Micro-LED arrays: a tool for two-dimensional neuron stimulation , 2008 .

[60]  Daniel L. Farkas,et al.  Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation , 1993, Nature.

[61]  R. Heintzmann,et al.  A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non‐conjugate images , 2001, Journal of microscopy.

[62]  P J Smith,et al.  Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator. , 2000, Applied optics.

[63]  Colin G. Coates,et al.  Optimizing low-light microscopy with back-illuminated electron multiplying charge-coupled device: enhanced sensitivity, speed, and resolution. , 2004, Journal of biomedical optics.

[64]  Artur Bednarkiewicz,et al.  Digital micromirror device as a spatial illuminator for fluorescence lifetime and hyperspectral imaging. , 2008, Applied optics.

[65]  Elliot L. Botvinick,et al.  3D profilometry using a dynamically configurable confocal microscope , 1999, Electronic Imaging.

[66]  P. Carlton,et al.  Three-dimensional structured illumination microscopy and its application to chromosome structure , 2008, Chromosome Research.

[67]  S. Hell,et al.  Nanoscale resolution in GFP-based microscopy , 2006, Nature Methods.

[68]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[69]  D. Arndt-Jovin,et al.  Three‐dimensional spectral imaging by Hadamard transform spectroscopy in a programmable array microscope , 2000, Journal of microscopy.

[70]  A. Miyawaki,et al.  Similar diffusibility of membrane proteins across the axon-soma and dendrite-soma boundaries revealed by a novel FRAP technique. , 2004, Journal of structural biology.

[71]  Alexander Egner,et al.  Fast 100-nm resolution three-dimensional microscope reveals structural plasticity of mitochondria in live yeast , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Pat Hanrahan,et al.  Brook for GPUs: stream computing on graphics hardware , 2004, SIGGRAPH 2004.

[73]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[74]  C. Guérin,et al.  Quantization of widefield fluorescence images using structured illumination and image analysis software , 2007, Microscopy research and technique.

[75]  David Baddeley,et al.  High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy , 2008, Chromosome Research.

[76]  Yeshaiahu Fainman,et al.  In-vivo confocal microscopy based on the Texas Instruments digital micromirror device , 2000, Photonics West - Biomedical Optics.

[77]  Clifford M. Babbey,et al.  Performance comparison between the high‐speed Yokogawa spinning disc confocal system and single‐point scanning confocal systems , 2005, Journal of microscopy.

[78]  Kenneth R. Spring,et al.  Video Microscopy: The Fundamentals , 1986 .

[79]  L H Schaefer,et al.  Structured illumination microscopy: artefact analysis and reduction utilizing a parameter optimization approach , 2004, Journal of microscopy.

[80]  T. Cremer,et al.  Towards many colors in FISH on 3D-preserved interphase nuclei , 2006, Cytogenetic and Genome Research.

[81]  N. Sloane,et al.  Hadamard transform optics , 1979 .

[82]  Keith A. Lidke,et al.  Dynamics of membrane receptors: single molecule tracking of quantum dot liganded epidermal growth factor , 2008 .

[83]  T. Jovin,et al.  Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors. , 2007, Methods in molecular biology.

[84]  M. Booth Adaptive optics in microscopy. , 2003, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[85]  J. Post,et al.  Quantum dot ligands provide new insights into erbB/HER receptor–mediated signal transduction , 2004, Nature Biotechnology.

[86]  T. Wilson,et al.  Image formation in structured illumination wide-field fluorescence microscopy. , 2008, Micron.

[87]  D. Toomre,et al.  Disk-Scanning Confocal Microscopy , 2006 .

[88]  M. Kozubek,et al.  Confocal microscopy by aperture correlation. , 1996, Optics letters.

[89]  C. Blanca,et al.  Wide-field depth-sectioning fluorescence microscopy using projector-generated patterned illumination. , 2007, Applied optics.

[90]  J. Post,et al.  Imaging molecular interactions in cells by dynamic and static fluorescence anisotropy (rFLIM and emFRET). , 2003, Biochemical Society transactions.

[91]  David M Rector,et al.  High-performance confocal system for microscopic or endoscopic applications. , 2003, Methods.

[92]  P. French,et al.  Optical sectioning microscopes with no moving parts using a micro-stripe array light emitting diode. , 2007, Optics express.

[93]  Sai Siva Gorthi,et al.  Fringe projection techniques: Whither we are? , 2010 .

[94]  Atsushi Miyawaki,et al.  Whole-field fluorescence microscope with digital micromirror device: imaging of biological samples. , 2003, Applied optics.

[95]  Rainer Heintzmann,et al.  Fluorescence lifetime imaging in an optically sectioning programmable array microscope (PAM) , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[96]  Quentin S. Hanley,et al.  Highly Multiplexed Optically Sectioned Spectroscopic Imaging in a Programmable Array Microscope , 2001 .

[97]  Y Fainman,et al.  Nontranslational three-dimensional profilometry by chromatic confocal microscopy with dynamically configurable micromirror scanning. , 2000, Applied optics.