Poling-Written Ferroelectricity in Bulk Multiferroic Double-Perovskite BiFe0.5Mn0.5O3.

We present a comprehensive study of the electrical properties of bulk polycrystalline BiFe0.5Mn0.5O3, a double perovskite synthesized in high-pressure and high-temperature conditions. BiFe0.5Mn0.5O3 shows an antiferromagnetic character with TN = 288 K overlapped with an intrinsic antiferroelectricity due to the Bi(3+) stereochemical effect. Beyond this, the observation of a semiconductor-insulator transition at TP ≈ 140 K allows one to define three distinct temperature ranges with completely different electrical properties. For T > TN, electric transport follows an ordinary thermally activated Arrhenius behavior; the system behaves as a paramagnetic semiconductor. At intermediate temperatures (TP < T < TN), electric transport is best described by Mott's variable range hopping model with lowered dimensionality D = 1, stabilized by the magnetic ordering process and driven by the inhomogeneity of the sample on the B site of the perovskite. Finally, for T < TP, the material becomes a dielectric insulator, showing very unusual poling-induced soft ferroelectricity with high saturation polarization, similar to the parent compound BiFeO3. Under external electric poling, the system irreversibly evolves from antiferroelectric to polar arrangement.

[1]  R. Yu,et al.  Polaron response dominated multiferroic property in 12R-type hexagonal Ba(Ti1/3Mn2/3)O3-δ ceramics , 2015 .

[2]  F. Mezzadri,et al.  Field effects on spontaneous magnetization reversal of bulk BiFe0.5Mn0.5O3, an effective strategy for the study of magnetic disordered systems , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  R. Yu,et al.  Structure, magnetic and electrical properties of disordered double perovskite Pb2CrMoO6 , 2015 .

[4]  W. P. Li,et al.  Room temperature ferroelectric properties and leakage current characterics of Bi2FeMnO6/SrTiO3 bilayered thin films by chemical solution deposition , 2014 .

[5]  N. Kallel,et al.  Electrical Resistivity Behavior and VRH Transport Mechanism in Semiconducting La0.6Sr0.4Mn1−2xFexCrxO3 (0.10≤x≤0.25) Manganites , 2013 .

[6]  F. Mezzadri,et al.  Thermally activated magnetization reversal in bulk BiFe0.5Mn0.5O3 , 2013, 1302.7231.

[7]  A. Belik Origin of magnetization reversal and exchange bias phenomena in solid solutions of BiFeO3-BiMnO3: intrinsic or extrinsic? , 2013, Inorganic chemistry.

[8]  P. Vanĕk,et al.  Absence of ferroelectricity in BiMnO3 ceramics , 2012, 1209.2321.

[9]  M. Varela,et al.  Ferroelectric phase transition in strained multiferroic (Bi0.9La0.1)2NiMnO6 thin films , 2012 .

[10]  N. Spaldin,et al.  High-temperature multiferroicity and strong magnetocrystalline anisotropy in 3d-5d double perovskites , 2010, 1003.2449.

[11]  Zhenxiang Cheng,et al.  Magnetic properties of La doped Bi2FeMnO6 ceramic and film , 2010 .

[12]  A. Gauzzi,et al.  Jahn-Teller-induced crossover of the paramagnetic response in the singly valent e g system LaMn 7 O 12 , 2010 .

[13]  Zhenxiang Cheng,et al.  Room temperature multiferroic properties of Nd:BiFeO3/Bi2FeMnO6 bilayered films , 2009 .

[14]  P. Fournier,et al.  Anomalously large ferromagnetic Curie temperature of epitaxial Bi2CoMnO6 thin films , 2008 .

[15]  V. Caignaert,et al.  Magneto-transport and magneto-dielectric effects in Bi-based perovskite manganites , 2008, 0801.3981.

[16]  M. Varela,et al.  Thin films in ternary Bi–Mn–O system obtained by pulsed laser deposition , 2007 .

[17]  H. Christen,et al.  Large ferroelectric polarization in antiferromagnetic BiFe0.5Cr0.5O3 epitaxial films , 2007 .

[18]  M. Viret,et al.  Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields , 2007, 0706.1681.

[19]  S. Fusil,et al.  Room-temperature coexistence of large electric polarization and magnetic order in Bi Fe O 3 single crystals , 2007, 0706.0404.

[20]  M. Gajek,et al.  Growth and magnetic properties of multiferroicLaxBi1−xMnO3thin films , 2007 .

[21]  M. Suchomel,et al.  High pressure bulk synthesis and characterization of the predicted multiferroic Bi(Fe1∕2Cr1∕2)O3 , 2007 .

[22]  A. Gauzzi,et al.  Dielectric properties of doping-free NaMn7O12: Origin of the observed colossal dielectric constant , 2006 .

[23]  Xiaohui Wang,et al.  Manifestation of ferroelectromagnetism in multiferroic BiMnO3 , 2005 .

[24]  F. Morrison,et al.  Growth of highly resistive BiMnO3 films , 2005 .

[25]  H. Jaeger,et al.  Multiple cotunneling in large quantum dot arrays. , 2005, Physical review letters.

[26]  S. Ishiwata,et al.  Designed ferromagnetic, ferroelectric Bi2NiMnO6 , 2005 .

[27]  A. Fert,et al.  Spin filtering through ferromagnetic BiMnO3 tunnel barriers , 2005, cond-mat/0504667.

[28]  Andrea Migliori,et al.  Room Temperature Polymorphism in Metastable BiMnO3 Prepared by High-Pressure Synthesis , 2005 .

[29]  P. Guyot-Sionnest,et al.  Variable range hopping conduction in semiconductor nanocrystal solids. , 2004, Physical review letters.

[30]  H. Jaeger,et al.  Percolating through networks of random thresholds: finite temperature electron tunneling in metal nanocrystal arrays. , 2003, Physical review letters.

[31]  Yasuhiro Tokura,et al.  Magnetocapacitance effect in multiferroic BiMnO 3 , 2003 .

[32]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[33]  A. A. Volkov,et al.  Origin of apparent colossal dielectric constants , 2002 .

[34]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[35]  R. Greene,et al.  Anomalous magnetoconductivity of epitaxial Nd0.7Sr0.3MnO3 and Pr0.7Sr0.3MnO3 films , 1996 .

[36]  Q. Jia,et al.  Transport‐magnetism correlations in the ferromagnetic oxide La0.7Ca0.3MnO3 , 1995 .

[37]  R. Mcgreevy,et al.  Magnetoresistance measurements on the magnetic semiconductor Nd0.5Pb0.5MnO3 , 1989 .

[38]  Alexander L. Efros,et al.  Coulomb gap in disordered systems , 1976 .

[39]  Boris I Shklovskii,et al.  Coulomb gap and low temperature conductivity of disordered systems , 1975 .

[40]  D. Emin,et al.  Studies of small-polaron motion IV. Adiabatic theory of the Hall effect , 1969 .