An eclipsing M-dwarf close to the hydrogen burning limit from NGTS

We present the discovery of NGTS J0930−18, an extreme mass ratio eclipsing M-dwarf binary system with an early M-dwarf primary and a late M-dwarf secondary close to the hydrogen burning limit. Global modelling of photometry and radial velocities reveals that the secondary component (NGTS J0930−18 B) has a mass of M* = $0.0818 ^{+0.0040}_{-0.0015}$ M⊙ and radius of R* = $0.1059 ^{+0.0023}_{-0.0021}$ R⊙, making it one of the lowest mass stars with direct mass and radius measurements. With a mass ratio of q = $0.1407 ^{+0.0065}_{-0.017}$, NGTS J0930−18 has the lowest mass ratio of any known eclipsing M-dwarf binary system, posing interesting questions for binary star formation and evolution models. The mass and radius of NGTS J0930−18 B is broadly consistent with stellar evolutionary models. NGTS J0930−18 B lies in the sparsely populated mass radius parameter space close to the substellar boundary. Precise measurements of masses and radii from single lined eclipsing binary systems of this type are vital for constraining the uncertainty in the mass–radius relationship – of importance due to the growing number of terrestrial planets being discovered around low-mass stars.

[1]  Chelsea X. Huang,et al.  TOI 694b and TIC 220568520b: Two Low-mass Companions near the Hydrogen-burning Mass Limit Orbiting Sun-like Stars , 2020, The Astronomical Journal.

[2]  S. Warren,et al.  The absolute magnitudes MJ, the binary fraction, and the binary mass ratios of M7–M9.5 dwarfs , 2020, 2006.11092.

[3]  David J Armstrong,et al.  NGTS-11 b (TOI-1847 b): A Transiting Warm Saturn Recovered from a TESS Single-transit Event , 2020, The Astrophysical Journal.

[4]  D. Bayliss,et al.  NGTS J214358.5−380102 – NGTS discovery of the most eccentric known eclipsing M-dwarf binary system , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  P. P. Pedersen,et al.  An eclipsing substellar binary in a young triple system discovered by SPECULOOS , 2020, Nature Astronomy.

[6]  Jr.,et al.  An extreme-mass ratio, short-period eclipsing binary consisting of a B dwarf primary and a pre-main-sequence M star companion discovered by KELT , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  D. Bayliss,et al.  NGTS and WASP photometric recovery of a single-transit candidate from TESS , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  David J Armstrong,et al.  TOI-222: a single-transit TESS candidate revealed to be a 34-d eclipsing binary with CORALIE, EulerCam, and NGTS , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  D. Bayliss,et al.  NGTS-7Ab: an ultrashort-period brown dwarf transiting a tidally locked and active M dwarf , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  Keivan G. Stassun,et al.  The Revised TESS Input Catalog and Candidate Target List , 2019, The Astronomical Journal.

[11]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  F. Bouchy,et al.  The EBLM project , 2019, Astronomy & Astrophysics.

[13]  Keivan G. Stassun,et al.  The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf , 2019, The Astronomical Journal.

[14]  Sara Seager,et al.  A super-Earth and two sub-Neptunes transiting the nearby and quiet M dwarf TOI-270 , 2019, Nature Astronomy.

[15]  L. Hillenbrand,et al.  Age Determination in Upper Scorpius with Eclipsing Binaries , 2019, The Astrophysical Journal.

[16]  C. Copperwheat,et al.  The scatter of the M dwarf mass–radius relationship , 2018, Monthly Notices of the Royal Astronomical Society.

[17]  D. Bayliss,et al.  A low-mass eclipsing binary within the fully convective zone from the Next Generation Transit Survey , 2018, Monthly Notices of the Royal Astronomical Society.

[18]  Zouhair Benkhaldoun,et al.  SPECULOOS: a network of robotic telescopes to hunt for terrestrial planets around the nearest ultracool dwarfs , 2018, Astronomical Telescopes + Instrumentation.

[19]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[20]  David J Armstrong,et al.  NGTS-1b : a hot Jupiter transiting an M-dwarf , 2017, 1710.11099.

[21]  David J Armstrong,et al.  Centroid vetting of transiting planet candidates from the Next Generation Transit Survey , 2017, 1707.07978.

[22]  Leslie Hebb,et al.  The EBLM Project IV. Spectroscopic orbits of over 100 eclipsing M dwarfs masquerading as transiting hot-Jupiters , 2017, 1707.07521.

[23]  S. Udry,et al.  The EBLM project III. A Saturn-size low-mass star at the hydrogen-burning limit , 2017, 1706.08781.

[24]  L. Hillenbrand,et al.  New Low-mass Eclipsing Binary Systems in Praesepe Discovered by K2 , 2017, 1706.03084.

[25]  Andrew A. West,et al.  An Empirical Template Library of Stellar Spectra for a Wide Range of Spectral Classes, Luminosity Classes, and Metallicities Using SDSS BOSS Spectra , 2017, 1702.06957.

[26]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[27]  E. Petigura,et al.  Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library , 2017, 1701.00922.

[28]  S. Zucker,et al.  BLS: Box-fitting Least Squares , 2016 .

[29]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[30]  P. Maxted ELLC - a fast, flexible light curve model for detached eclipsing binary stars and transiting exoplanets , 2016, 1603.08484.

[31]  M. Barbieri,et al.  Larger and faster: revised properties and a shorter orbital period for the WASP-57 planetary system from a pro-am collaboration , 2015, 1509.05609.

[32]  Suzanne Aigrain,et al.  ldtk: Limb Darkening Toolkit , 2015, 1508.02634.

[33]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[34]  R. Riddle,et al.  CHARACTERIZING THE COOL KOIs. VII. REFINED PHYSICAL PROPERTIES OF THE TRANSITING BROWN DWARF LHS 6343 C , 2014, 1411.4047.

[35]  C. D. Laney,et al.  The EBLM project II. A very hot, low-mass M dwarf in an eccentric and long-period, eclipsing binary system from the SuperWASP Survey , 2014, 1408.6900.

[36]  C. Soubiran,et al.  Determining stellar atmospheric parameters and chemical abundances of FGK stars with iSpec , 2014, 1407.2608.

[37]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[38]  J. Winters,et al.  THE SOLAR NEIGHBORHOOD. XXXII. THE HYDROGEN BURNING LIMIT, , 2013, 1312.1736.

[39]  P. Demarque,et al.  THE RADIUS DISCREPANCY IN LOW-MASS STARS: SINGLE VERSUS BINARIES , 2013, 1308.5558.

[40]  M. Kotze,et al.  Characterizing and Commissioning the Sutherland High-Speed Optical Cameras (SHOC) , 2013 .

[41]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[42]  B. Sipocz,et al.  A highly unequal-mass eclipsing M-dwarf binary in the WFCAM Transit Survey , 2013, 1303.0945.

[43]  Nigel Bannister,et al.  Next Generation Transit Survey (NGTS) , 2013, Proceedings of the International Astronomical Union.

[44]  L. Ramsey,et al.  THE METALLICITY OF THE CM DRACONIS SYSTEM , 2012, 1210.4736.

[45]  K. Stassun,et al.  The EBLM project - I. Physical and orbital parameters, including spin-orbit angles, of two low-mass eclipsing binaries on opposite sides of the brown dwarf limit , 2012, 1208.4940.

[46]  Gregory A. Feiden,et al.  REEVALUATING THE MASS–RADIUS RELATION FOR LOW-MASS, MAIN-SEQUENCE STARS , 2012, 1207.3090.

[47]  D. Schneider,et al.  VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. I. A LOW-MASS RATIO STELLAR COMPANION TO TYC 4110-01037-1 IN A 79 DAY ORBIT , 2012, 1202.4964.

[48]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[49]  F. Allard,et al.  Models of very-low-mass stars, brown dwarfs and exoplanets , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[51]  P. Berlind,et al.  LSPM J1112+7626: DETECTION OF A 41 DAY M-DWARF ECLIPSING BINARY FROM THE MEARTH TRANSIT SURVEY , 2011, 1109.2055.

[52]  T. Guillot,et al.  SOPHIE velocimetry of Kepler transit candidates III. KOI-423b: an 18 Mjup transiting companion around an F7IV star , 2011, 1106.3225.

[53]  David Collins,et al.  COMPARING NUMERICAL METHODS FOR ISOTHERMAL MAGNETIZED SUPERSONIC TURBULENCE , 2011, 1103.5525.

[54]  D. Queloz,et al.  TRAPPIST: a robotic telescope dedicated to the study of planetary systems , 2011, 1101.5807.

[55]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[56]  Howard Isaacson,et al.  LHS 6343 C: A TRANSITING FIELD BROWN DWARF DISCOVERED BY THE KEPLER MISSION , 2010, 1008.4141.

[57]  Adam L. Kraus,et al.  THE MASS–RADIUS(–ROTATION?) RELATION FOR LOW-MASS STARS , 2010, 1011.2757.

[58]  David Charbonneau,et al.  NLTT 41135: A FIELD M DWARF + BROWN DWARF ECLIPSING BINARY IN A TRIPLE SYSTEM, DISCOVERED BY THE MEARTH OBSERVATORY , 2010, 1006.1793.

[59]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[60]  W. Traub,et al.  TRANSITS OF EARTH-LIKE PLANETS , 2009, 0903.3371.

[61]  Andrew A. West,et al.  Stellar SEDs from 0.3 to 2.5 μm: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and 2MASS , 2007, 0707.4473.

[62]  C. Blake,et al.  A New Low-Mass Eclipsing Binary from SDSS-II , 2007, 0707.3604.

[63]  Gilles Chabrier,et al.  Evolution of low-mass star and brown dwarf eclipsing binaries , 2007, 0707.1792.

[64]  A. Whitworth,et al.  Brown dwarf formation by binary disruption , 2007, astro-ph/0703106.

[65]  Mercedes Lopez-Morales,et al.  On the Correlation between the Magnetic Activity Levels, Metallicities, and Radii of Low-Mass Stars , 2007, astro-ph/0701702.

[66]  Philip A. Ianna,et al.  The Solar Neighborhood. XVII. Parallax Results from the CTIOPI 0.9 m Program: 20 New Members of the RECONS 10 Parsec Sample , 2006, astro-ph/0608230.

[67]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[68]  I. Ribas Masses and Radii of Low-Mass Stars: Theory Versus Observations , 2005, astro-ph/0511431.

[69]  Tsevi Mazeh,et al.  Correcting systematic effects in a large set of photometric light curves , 2005, astro-ph/0502056.

[70]  J. Beuzit,et al.  M dwarfs binaries: Results from accurate radial velocities and high angular resolution observations , 2004 .

[71]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[72]  I. Bonnell,et al.  The formation mechanism of brown dwarfs , 2002, astro-ph/0206365.

[73]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[74]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[75]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[76]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[77]  J. Anosova Dynamical evolution of triple systems , 1986 .

[78]  L. B. Lucy,et al.  Spectroscopic binaries with circular orbits , 1973 .

[79]  F. Pijpers,et al.  UvA-DARE (Digital Academic Repository) Unbiased image reconstruction as an inverse problem , 2021 .

[80]  S. Udry,et al.  The EBLM Project VI. The mass and radius of five low-mass stars in F+M binaries discovered by the WASP survey , 2019 .

[81]  Models of Stars, Brown Dwarfs and Exoplanets , 2011 .