Sparse matrix inversion with scaled Lasso
暂无分享,去创建一个
[1] Bin Yu,et al. Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of boldmathell_1-regularized MLE , 2008, NIPS 2008.
[2] E. Candès,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[3] Jianqing Fan,et al. Comments on: ℓ1-penalization for mixture regression models , 2010 .
[4] A. Tsybakov,et al. Aggregation for Gaussian regression , 2007, 0710.3654.
[5] V. Koltchinskii. The Dantzig selector and sparsity oracle inequalities , 2009, 0909.0861.
[6] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[7] S. Geer,et al. On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.
[8] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[9] C. Borell. The Brunn-Minkowski inequality in Gauss space , 1975 .
[10] Tong Zhang. Some sharp performance bounds for least squares regression with L1 regularization , 2009, 0908.2869.
[11] Martin J. Wainwright,et al. Model Selection in Gaussian Graphical Models: High-Dimensional Consistency of l1-regularized MLE , 2008, NIPS.
[12] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[13] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[14] R. Tibshirani,et al. Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.
[15] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[16] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[17] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[18] P. Zhao,et al. A path following algorithm for Sparse Pseudo-Likelihood Inverse Covariance Estimation (SPLICE) , 2008, 0807.3734.
[19] D. Donoho,et al. Minimax risk over / p-balls for / q-error , 2022 .
[20] Cun-Hui Zhang,et al. Scaled sparse linear regression , 2011, 1104.4595.
[21] P. Massart,et al. Minimal Penalties for Gaussian Model Selection , 2007 .
[22] Ming Yuan,et al. High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..
[23] P. Massart,et al. Gaussian model selection , 2001 .
[24] Tong Zhang,et al. A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems , 2011, 1108.4988.
[25] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[26] Felix Abramovich,et al. MAP model selection in Gaussian regression , 2009, 0912.4387.
[27] Cun-Hui Zhang,et al. The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.
[28] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[29] I. Johnstone,et al. Minimax risk overlp-balls forlp-error , 1994 .
[30] Cun-Hui Zhang,et al. Rate Minimaxity of the Lasso and Dantzig Selector for the lq Loss in lr Balls , 2010, J. Mach. Learn. Res..
[31] Alexandre d'Aspremont,et al. Model Selection Through Sparse Max Likelihood Estimation Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data , 2022 .
[32] Lie Wang,et al. Shifting Inequality and Recovery of Sparse Signals , 2010, IEEE Transactions on Signal Processing.
[33] E. Barrio. Comments on: l1-penalization for mixture regression models , 2010 .
[34] I. Johnstone,et al. Minimax Risk over l p-Balls for l q-error , 1994 .
[35] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[36] Jianqing Fan,et al. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.
[37] Shu Yang,et al. Target Detection Via Network Filtering , 2009, IEEE Transactions on Information Theory.
[38] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.