Reduced-order observer design for nonlinear systems

[1]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[2]  D. Luenberger An introduction to observers , 1971 .

[3]  F. Thau Observing the state of non-linear dynamic systems† , 1973 .

[4]  Tzyh Jong Tarn,et al.  Exponential Observers for Nonlinear Dynamic Systems , 1975, Inf. Control..

[5]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[6]  D. Bestle,et al.  Canonical form observer design for non-linear time-variable systems , 1983 .

[7]  A. Krener,et al.  Nonlinear observers with linearizable error dynamics , 1985 .

[8]  J. Gauthier,et al.  Observability and observers for non-linear systems , 1986, 1986 25th IEEE Conference on Decision and Control.

[9]  S. Gils,et al.  Center manifolds and contractions on a scale of Banach spaces , 1987 .

[10]  X. Xia,et al.  Non-linear observer design by observer canonical forms , 1988 .

[11]  Wei-bing Gao,et al.  On exponential observers for nonlinear systems , 1988 .

[12]  J. Tsinias Observer design for nonlinear control systems , 1989 .

[13]  J. Tsinias Further results on the observer design problem , 1990 .

[14]  A. Phelps On constructing nonlinear observers , 1991 .

[15]  J. Gauthier,et al.  Observers for nonlinear systems , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[16]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[17]  W. Rugh Linear System Theory , 1992 .

[18]  Abhinandan Jain,et al.  Diagonalized Lagrangian robot dynamics , 1995, IEEE Trans. Robotics Autom..

[19]  C. Kravaris,et al.  Nonlinear observer design using Lyapunov's auxiliary theorem , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[20]  Bruno Siciliano,et al.  Robot Force Control , 2000 .

[21]  Gildas Besancon,et al.  Global output feedback tracking control for a class of Lagrangian systems , 2000, Autom..

[22]  Petar V. Kokotovic,et al.  Nonlinear observers: a circle criterion design and robustness analysis , 2001, Autom..

[23]  V. Sundarapandian Local observer design for nonlinear systems , 2002 .

[24]  V. Sundarapandian Exponential observer design for nonlinear systems with real parametric uncertainty , 2003 .

[25]  Arthur J. Krener,et al.  Locally Convergent Nonlinear Observers , 2003, SIAM J. Control. Optim..

[26]  Pierre Rouchon,et al.  An intrinsic observer for a class of Lagrangian systems , 2003, IEEE Trans. Autom. Control..

[27]  Alessandro Astolfi,et al.  Two results for adaptive output feedback stabilization of nonlinear systems , 2003, Autom..

[28]  Alessandro Astolfi,et al.  Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[29]  V. Sundarapandian New results on general observers for nonlinear systems , 2004, Appl. Math. Lett..

[30]  A. Astolfi,et al.  Nonlinear observer design using invariant manifolds and applications , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[31]  Wei Lin,et al.  A Global Observer for Observable Autonomous Systems with Bounded Solution Trajectories , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  Alessandro Astolfi,et al.  A new solution to the problem of range identification in perspective vision systems , 2005, IEEE Transactions on Automatic Control.

[33]  M. Spong,et al.  Robot Modeling and Control , 2005 .

[34]  A. Astolfi,et al.  Reduced-order observer design for systems with non-monotonic nonlinearities , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[35]  Alessandro Astolfi,et al.  Global complete observability and output-to-state stability imply the existence of a globally convergent observer , 2006, Math. Control. Signals Syst..