Complexity and dynamics of in organello translation landscape assessed by high-resolution mitochondrial ribosome profiling

Eukaryotes house an additional protein synthesis system within the mitochondria. Given that mitochondrial translation dictates OXPHOS complex abundance and ATP levels in cells, exhaustive, quantitative, and high-resolution delineation of mitoribosome traversal is needed. Here, we developed a technique for high-resolution mitochondrial ribosome profiling and unveiled the tight regulation of mammalian in organello translation. Our approach assessed the stoichiometry and kinetics of mitochondrial translation flux, such as the absolute numbers of mitoribosomes on a transcript and the elongation rate, initiation rate, and lifetime rounds of translation of individual transcripts. We also surveyed the impacts of modifications at anticodon stem loop in mt-tRNAs, including all possible decorations at 34th position, by deleting the corresponding enzymes and harnessing patient-derived mtDNA A3243G cells. Moreover, retapamulin-assisted profiling and disome profiling unveiled cryptic translation initiation sites at subcognate codons and programmed mitoribosome collision sites across the mitochondrial transcriptome, respectively. Our work provides a useful resource for delineating protein synthesis within this indispensable organelle.

[1]  M. Doi,et al.  Absolute calibration of ribosome profiling assesses the dynamics of ribosomal flux on transcripts , 2023, bioRxiv.

[2]  Yoshimi Kawamura,et al.  NSUN3-mediated mitochondrial tRNA 5-formylcytidine modification is essential for embryonic development and respiratory complexes in mice , 2023, Communications Biology.

[3]  Tsutomu Suzuki,et al.  Restoration of mitochondrial function through activation of hypomodified tRNAs with pathogenic mutations associated with mitochondrial diseases , 2023, Nucleic acids research.

[4]  A. Higashibata,et al.  Gravitational and mechanical forces drive mitochondrial translation through the cell adhesion–FAK axis , 2023, bioRxiv.

[5]  Shintaro Iwasaki,et al.  Thor-Ribo-Seq: ribosome profiling tailored for low input with RNA-dependent RNA amplification , 2023, bioRxiv.

[6]  A. Firth,et al.  Translation initiation of leaderless and polycistronic transcripts in mammalian mitochondria , 2023, Nucleic acids research.

[7]  Shintaro Iwasaki,et al.  Compounds for selective translational inhibition. , 2022, Current opinion in chemical biology.

[8]  Haiwang Yang,et al.  Low-input RNase footprinting for simultaneous quantification of cytosolic and mitochondrial translation , 2022, Genome research.

[9]  D. Klepacki,et al.  Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol , 2022, Nature Structural & Molecular Biology.

[10]  R. Green,et al.  Bursting Translation on Single mRNAs in Live Cells , 2022, bioRxiv.

[11]  Shintaro Iwasaki,et al.  Into the matrix: current methods for mitochondrial translation studies. , 2022, Journal of biochemistry.

[12]  Tatsuya Osaki,et al.  Mito-FUNCAT-FACS reveals cellular heterogeneity in mitochondrial translation , 2022, bioRxiv.

[13]  H. Taguchi,et al.  The landscape of translational stall sites in bacteria revealed by monosome and disome profiling , 2021, RNA.

[14]  P. Oefner,et al.  Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. , 2021, Molecular cell.

[15]  H. Urlaub,et al.  An in vitro system to silence mitochondrial gene expression , 2021, Cell.

[16]  Sebastian A. Leidel,et al.  Humans and other commonly used model organisms are resistant to cycloheximide-mediated biases in ribosome profiling experiments , 2021, Nature Communications.

[17]  A. Mankin,et al.  Structural basis for context-specific inhibition of translation by oxazolidinone antibiotics , 2021, bioRxiv.

[18]  F. Weber,et al.  eIF2B-capturing viral protein NSs suppresses the integrated stress response , 2021, Nature Communications.

[19]  L. S. Churchman,et al.  Balanced mitochondrial and cytosolic translatomes underlie the biogenesis of human respiratory complexes , 2021, bioRxiv.

[20]  Sophia Hsin-Jung Li,et al.  Monitoring mammalian mitochondrial translation with MitoRiboSeq , 2021, Nature Protocols.

[21]  Tsutomu Suzuki The expanding world of tRNA modifications and their disease relevance , 2021, Nature Reviews Molecular Cell Biology.

[22]  E. Kim,et al.  Ribosome stalling and SGS3 phase separation prime the epigenetic silencing of transposons , 2021, Nature Plants.

[23]  R. Best,et al.  Mechanism of membrane-tethered mitochondrial protein synthesis , 2021, Science.

[24]  N. Ban,et al.  Mechanisms and regulation of protein synthesis in mitochondria , 2021, Nature Reviews Molecular Cell Biology.

[25]  Wenfeng Qian,et al.  Disome-seq reveals widespread ribosome collisions that promote cotranslational protein folding , 2021, Genome biology.

[26]  V. Gladyshev,et al.  Translation elongation rate varies among organs and decreases with age , 2020, Nucleic acids research.

[27]  Yuichiro Mishima,et al.  Protocol for Disome Profiling to Survey Ribosome Collision in Humans and Zebrafish , 2020, STAR protocols.

[28]  Angus E. McMillan,et al.  Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome , 2020, Science.

[29]  Tsutomu Suzuki,et al.  Complete chemical structures of human mitochondrial tRNAs , 2020, Nature Communications.

[30]  N. Guydosh,et al.  Disome and Trisome Profiling Reveal Genome-wide Targets of Ribosome Quality Control. , 2020, Molecular cell.

[31]  A. Tuck,et al.  Mammalian RNA Decay Pathways Are Highly Specialized and Widely Linked to Translation , 2020, Molecular cell.

[32]  Maxim N. Shokhirev,et al.  Accurate annotation of human protein-coding small open reading frames , 2019, Nature Chemical Biology.

[33]  Jeffrey A. Hussmann,et al.  GIGYF2 and 4EHP Inhibit Translation Initiation of Defective Messenger RNAs to Assist Ribosome-Associated Quality Control , 2019, bioRxiv.

[34]  Yuichiro Mishima,et al.  Genome-wide survey of ribosome collision , 2019, bioRxiv.

[35]  D. Gatfield,et al.  Transcriptome-wide sites of collided ribosomes reveal principles of translational pausing , 2019, bioRxiv.

[36]  J. Weissman,et al.  Cycloheximide can distort measurements of mRNA levels and translation efficiency , 2019, Nucleic acids research.

[37]  R. Green,et al.  High-Resolution Ribosome Profiling Defines Discrete Ribosome Elongation States and Translational Regulation during Cellular Stress. , 2019, Molecular cell.

[38]  R. Green,et al.  A systematically-revised ribosome profiling method for bacteria reveals pauses at single-codon resolution , 2019, eLife.

[39]  D. Klepacki,et al.  Retapamulin-assisted ribosome profiling reveals the alternative bacterial proteome , 2019, bioRxiv.

[40]  J. Richter,et al.  Optimization of ribosome profiling using low-input brain tissue from fragile X syndrome model mice , 2018, Nucleic acids research.

[41]  T. Morisaki,et al.  Quantifying Single mRNA Translation Kinetics in Living Cells. , 2018, Cold Spring Harbor perspectives in biology.

[42]  Xiao He,et al.  Deletion of Mtu1 (Trmu) in zebrafish revealed the essential role of tRNA modification in mitochondrial biogenesis and hearing function , 2018, Nucleic acids research.

[43]  G. Dittmar,et al.  Queuosine‐modified tRNAs confer nutritional control of protein translation , 2018, The EMBO journal.

[44]  E. Phizicky,et al.  A rationale for tRNA modification circuits in the anticodon loop , 2018, RNA.

[45]  C. Fraser,et al.  Toward a Kinetic Understanding of Eukaryotic Translation. , 2018, Cold Spring Harbor perspectives in biology.

[46]  Tsutomu Suzuki,et al.  CO2-sensitive tRNA modification associated with human mitochondrial disease , 2018, Nature Communications.

[47]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[48]  Y. Okazaki,et al.  Metabolic and chemical regulation of tRNA modification associated with taurine deficiency and human disease , 2018, Nucleic acids research.

[49]  Sophia Hsin-Jung Li,et al.  Mitochondrial translation requires folate-dependent tRNA methylation , 2018, Nature.

[50]  L. Scorrano,et al.  Defective Mitochondrial tRNA Taurine Modification Activates Global Proteostress and Leads to Mitochondrial Disease. , 2018, Cell reports.

[51]  Anna Feldman,et al.  The extent of ribosome queuing in budding yeast , 2018, PLoS Comput. Biol..

[52]  J. Chao,et al.  Single-Molecule Quantification of Translation-Dependent Association of mRNAs with the Endoplasmic Reticulum. , 2017, Cell reports.

[53]  R. Agami,et al.  Using mitoribosomal profiling to investigate human mitochondrial translation , 2017, Wellcome open research.

[54]  M. Garber,et al.  Transcriptome-wide Analysis of Roles for tRNA Modifications in Translational Regulation. , 2017, Molecular cell.

[55]  F. Förster,et al.  Structure of the Human Mitochondrial Ribosome Studied In Situ by Cryoelectron Tomography. , 2017, Structure.

[56]  J. Mata,et al.  Effects of cycloheximide on the interpretation of ribosome profiling experiments in Schizosaccharomyces pombe , 2017, Scientific Reports.

[57]  Nicholas T Ingolia,et al.  Transcriptome-wide measurement of translation by ribosome profiling. , 2017, Methods.

[58]  A. Suomalainen,et al.  Mitochondrial diseases: the contribution of organelle stress responses to pathology , 2017, Nature Reviews Molecular Cell Biology.

[59]  Tsutomu Suzuki,et al.  ALKBH1 is an RNA dioxygenase responsible for cytoplasmic and mitochondrial tRNA modifications , 2017, Nucleic acids research.

[60]  R. Green,et al.  eIF5A Functions Globally in Translation Elongation and Termination. , 2017, Molecular cell.

[61]  K. Kannan,et al.  Context-specific inhibition of translation by ribosomal antibiotics targeting the peptidyl transferase center , 2016, Proceedings of the National Academy of Sciences.

[62]  S. Oeljeklaus,et al.  Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein , 2016, Cell.

[63]  Vadim N. Gladyshev,et al.  Ribonuclease selection for ribosome profiling , 2016, Nucleic acids research.

[64]  Tsutomu Suzuki,et al.  Mtu1-Mediated Thiouridine Formation of Mitochondrial tRNAs Is Required for Mitochondrial Translation and Is Involved in Reversible Infantile Liver Injury , 2016, PLoS genetics.

[65]  M. Rodnina,et al.  NSUN3 and ABH1 modify the wobble position of mt‐tRNA Met to expand codon recognition in mitochondrial translation , 2016, The EMBO journal.

[66]  Tsutomu Suzuki,et al.  NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). , 2016, Nature chemical biology.

[67]  Michaela Frye,et al.  Deficient methylation and formylation of mt-tRNAMet wobble cytosine in a patient carrying mutations in NSUN3 , 2016, Nature Communications.

[68]  Bin Wu,et al.  Translation dynamics of single mRNAs in live cells and neurons , 2016, Science.

[69]  Luke D. Lavis,et al.  Real-time quantification of single RNA translation dynamics in living cells , 2016, Science.

[70]  A. Heger,et al.  UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy , 2016, bioRxiv.

[71]  X. Zhuang,et al.  Real-Time Imaging of Translation on Single mRNA Transcripts in Live Cells , 2016, Cell.

[72]  Ronald D. Vale,et al.  Dynamics of Translation of Single mRNA Molecules In Vivo , 2016, Cell.

[73]  V. de Crécy-Lagard,et al.  Global translational impacts of the loss of the tRNA modification t6A in yeast , 2015, Microbial cell.

[74]  Jeffrey A. Hussmann,et al.  Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast , 2015, bioRxiv.

[75]  Sebastian A. Leidel,et al.  Optimization of Codon Translation Rates via tRNA Modifications Maintains Proteome Integrity , 2015, Cell.

[76]  V. Kelly,et al.  The Queuine Micronutrient: Charting a Course from Microbe to Man , 2015, Nutrients.

[77]  F. Förster,et al.  Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography , 2015, Nature Communications.

[78]  Shu-Bing Qian,et al.  Quantitative profiling of initiating ribosomes in vivo , 2014, Nature Methods.

[79]  E. O’Shea,et al.  An Integrated Approach Reveals Regulatory Controls on Bacterial Translation Elongation , 2014, Cell.

[80]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[81]  Vadim N. Gladyshev,et al.  Translation inhibitors cause abnormalities in ribosome profiling experiments , 2014, Nucleic acids research.

[82]  Neville E. Sanjana,et al.  Improved vectors and genome-wide libraries for CRISPR screening , 2014, Nature Methods.

[83]  P. Brown,et al.  Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments , 2014, eLife.

[84]  Rachel Green,et al.  Dom34 Rescues Ribosomes in 3′ Untranslated Regions , 2014, Cell.

[85]  Reuven Agami,et al.  Ribosome profiling reveals features of normal and disease-associated mitochondrial translation , 2013, Nature Communications.

[86]  W. Gilbert,et al.  Loss of a Conserved tRNA Anticodon Modification Perturbs Cellular Signaling , 2013, PLoS genetics.

[87]  F. Murphy,et al.  Expanded use of sense codons is regulated by modified cytidines in tRNA , 2013, Proceedings of the National Academy of Sciences.

[88]  Ching-Wei Chang,et al.  Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response , 2013, Proceedings of the National Academy of Sciences.

[89]  B. Shen,et al.  Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution , 2012, Proceedings of the National Academy of Sciences.

[90]  Jon R Lorsch,et al.  A mechanistic overview of translation initiation in eukaryotes , 2012, Nature Structural &Molecular Biology.

[91]  N. Nomura,et al.  LRPPRC/SLIRP suppresses PNPase-mediated mRNA decay and promotes polyadenylation in human mitochondria , 2012, Nucleic acids research.

[92]  A. Wakamatsu,et al.  Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals , 2012, Genome research.

[93]  Ji Yu,et al.  Single-molecule imaging of translational output from individual RNA granules in neurons , 2012, Molecular biology of the cell.

[94]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[95]  M. Haque,et al.  Properties of the C-terminal Tail of Human Mitochondrial Inner Membrane Protein Oxa1L and Its Interactions with Mammalian Mitochondrial Ribosomes* , 2010, The Journal of Biological Chemistry.

[96]  R. Lightowlers,et al.  Human mitochondrial mRNAs—like members of all families, similar but different , 2010, Biochimica et biophysica acta.

[97]  V. Kelly,et al.  Characterization of the human tRNA-guanine transglycosylase: confirmation of the heterodimeric subunit structure. , 2010, RNA.

[98]  M. Vinayak,et al.  Queuosine modification of tRNA: its divergent role in cellular machinery. , 2009, Bioscience reports.

[99]  H. True,et al.  The Sua5 Protein Is Essential for Normal Translational Regulation in Yeast , 2009, Molecular and Cellular Biology.

[100]  H. Mandel,et al.  Acute infantile liver failure due to mutations in the TRMU gene. , 2009, American journal of human genetics.

[101]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[102]  L. Spremulli,et al.  Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system , 2009, Nucleic acids research.

[103]  E. Shoubridge,et al.  The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. , 2008, Human molecular genetics.

[104]  Pierre Baldi,et al.  An enhanced MITOMAP with a global mtDNA mutational phylogeny , 2006, Nucleic Acids Res..

[105]  Martin Ott,et al.  Mba1, a membrane‐associated ribosome receptor in mitochondria , 2006, The EMBO journal.

[106]  Tsutomu Suzuki,et al.  Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[107]  Y. Ohya,et al.  Mitochondria-specific RNA-modifying Enzymes Responsible for the Biosynthesis of the Wobble Base in Mitochondrial tRNAs , 2005, Journal of Biological Chemistry.

[108]  Takehiro Yasukawa,et al.  Codon-specific translational defect caused by a wobble modification deficiency in mutant tRNA from a human mitochondrial disease. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[109]  C. Florentz,et al.  Recognition of human mitochondrial tRNALeu(UUR) by its cognate leucyl-tRNA synthetase. , 2004, Journal of molecular biology.

[110]  R. Stuart,et al.  Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C‐terminal region of Oxa1 , 2003, The EMBO journal.

[111]  W. Neupert,et al.  Ribosome binding to the Oxa1 complex facilitates co‐translational protein insertion in mitochondria , 2003, The EMBO journal.

[112]  C. Florentz,et al.  Towards understanding human mitochondrial leucine aminoacylation identity. , 2003, Journal of molecular biology.

[113]  Tsutomu Suzuki,et al.  Taurine as a constituent of mitochondrial tRNAs: new insights into the functions of taurine and human mitochondrial diseases , 2002, The EMBO journal.

[114]  Takehiro Yasukawa,et al.  Modification Defect at Anticodon Wobble Nucleotide of Mitochondrial tRNAsLeu(UUR) with Pathogenic Mutations of Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like Episodes* , 2000, The Journal of Biological Chemistry.

[115]  Y. Goto,et al.  A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). , 1991, Biochimica et biophysica acta.

[116]  K. Nihei,et al.  A point mutation in the mitochondrial tRNA(Leu)(UUR) gene in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes). , 1990, Biochemical and biophysical research communications.

[117]  I. Nonaka,et al.  A mutation in the tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies , 1990, Nature.

[118]  A. Byström,et al.  Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. , 1989, Science.

[119]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[120]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[121]  S. Dimauro,et al.  Mitochondrial diseases. , 1989, Neurologic clinics.