Cellular automata for reactive systems

Two classes of cellular automata for reaction-diiusion systems are developed. These are the Reactive Lattice Gas Automata and the Moving Average Cellular Automata. For both classes explicit procedures for the construction of the automata are given. The construction can be based on given reaction mechanisms or on partial diierential equations. The cellular automata methods are used to investigate several nonlinear reaction-diiusion systems. The reactive lattice gas automata possess intrinsic uctuations that closely reeect uctuations in real systems. These uctuations are investigated in a bistable system and the correlations compared with the theoretical predictions from a Landau approach. The innuence of the spatial dimension and the aspect ratio on the correlations is considered and it is demonstrated how geometrical restrictions increase the uctuations and thereby increase the rate of transition between stable states. For investigations of macroscopic phenomena the moving average cellular automata are more eecient. They are used to simulate several models: { The complex Ginzburg-Landau equation is used to demonstrate oscillatory spiral waves. { The FitzHugh-Nagumo model is investigated as an example for excitable media. Excitable waves in circular and spiral form are shown, and it is demonstrated how the curvature of the wave front innuences the speed of propagation. Spiral waves can be initiated either through special initial conditions or through intrinsic uctuations. There are many analogies to the fronts in bistable media modeled with reactive lattice gas automata. { Simulations of another reaction model (the Lengyel-Epstein model of the CIMA reaction) show Turing patterns. Here the emphasis is on the possible coexistence of diierent types of spatial or spatio-temporal patterns. The cellular automata methods are extended to include advection by a ow eld, and two methods are developed for generating the ow eld. One is the lattice Boltzmann method for simulating the Navier-Stokes equations, and the other is a cellular automaton method for generating a stochastic velocity eld with characteristics similar to those observed in homogeneous turbulent ows. It is demonstrated how the nonlaminar or turbulent ow aaects the reaction-diiusion system by mixing and also by increasing the eeective diiusion coeecient. This work demonstrates that cellular automata are a powerful tool for modeling reaction-diiusion systems, including the eeects of uctuations. Acknowledgements Many thanks to everybody who has helped me along during these years, be it through advice, encouragement, comments, proofreading, or simply by being there. I would like to thank especially Professor J.-P. Boon for inviting me …

[1]  R. Benzi,et al.  Lattice Gas Dynamics with Enhanced Collisions , 1989 .

[2]  J. Koelman,et al.  A Simple Lattice Boltzmann Scheme for Navier-Stokes Fluid Flow , 1991 .

[3]  Gerhard Grössing,et al.  Quantum Cellular Automata , 1988, Complex Syst..

[4]  Zanetti,et al.  Use of the Boltzmann equation to simulate lattice gas automata. , 1988, Physical review letters.

[5]  K. Showalter,et al.  Instabilities in propagating reaction-diffusion fronts , 1993 .

[6]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[7]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[8]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[9]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[10]  A. Winfree Spiral Waves of Chemical Activity , 1972, Science.

[11]  Roland Vollmar Algorithmen in Zellularautomaten , 1979 .

[12]  Paul Manneville,et al.  Cellular Automata and Modeling of Complex Physical Systems , 1989 .

[13]  Michael Brereton,et al.  A Modern Course in Statistical Physics , 1981 .

[14]  Robert T. Wainwright,et al.  Life is universal! , 1974, WSC '74.

[15]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[16]  Patrick S. Hagan,et al.  Spiral Waves in Reaction-Diffusion Equations , 1982 .

[17]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[18]  I. Epstein,et al.  Modeling of Turing Structures in the Chlorite—Iodide—Malonic Acid—Starch Reaction System , 1991, Science.

[19]  Sancho,et al.  Stochastic generation of homogeneous isotropic turbulence with well-defined spectra. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[21]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[22]  A. T. Winfree,et al.  The prehistory of the Belousov-Zhabotinsky oscillator , 1984 .

[23]  Sauro Succi,et al.  Fluctuation Correlations in Reaction-Diffusion Systems: Reactive Lattice Gas Automata Approach , 1992 .

[24]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[25]  K. Maginu Reaction-diffusion equation describing morphogenesis I. waveform stability of stationary wave solutions in a one dimensional model , 1975 .

[26]  J. Boissonade,et al.  Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction , 1991 .

[27]  Jacqueline Signorini,et al.  Complex Computing with Cellular Automata , 1989 .

[28]  Kapral,et al.  Cellular-automaton model for reactive systems. , 1990, Physical review letters.

[29]  Kapral,et al.  Oscillations and waves in a reactive lattice-gas automaton. , 1991, Physical review letters.

[30]  J. A. M. Janssen,et al.  The elimination of fast variables in complex chemical reactions. I. Macroscopic level , 1989 .

[31]  John J. Tyson,et al.  Third Generation Cellular Automation for Modeling Excitable Media , 1992, PPSC.

[32]  Peter Grassberger,et al.  On phase transitions in Schlögl's second model , 1982 .

[33]  V. Zykov [Analytic evaluation of the relationship between the speed of a wave of excitation in a two-dimensional excitable medium and the curvature of its front]. , 1980, Biofizika.

[34]  A. Winfree Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media. , 1991, Chaos.

[35]  Perraud,et al.  One-dimensional "spirals": Novel asynchronous chemical wave sources. , 1993, Physical review letters.

[36]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[37]  R. Kapral,et al.  Vortex dynamics in oscillatory chemical systems. , 1991, Chaos.

[38]  Q Ouyang,et al.  Pattern Formation by Interacting Chemical Fronts , 1993, Science.

[39]  Gottfried Jetschke,et al.  Mathematik der Selbstorganisation , 1989 .

[40]  R. Balescu Equilibrium and Nonequilibrium Statistical Mechanics , 1991 .

[41]  Jean-Pierre Boon,et al.  Statistical mechanics and hydrodynamics of lattice gas automata: an overview , 1991 .

[42]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[43]  Boon,et al.  Class of cellular automata for reaction-diffusion systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  S. Kauffman Emergent properties in random complex automata , 1984 .

[45]  J. Tyson,et al.  A cellular automation model of excitable media including curvature and dispersion. , 1990, Science.

[46]  Graeme A. Bird,et al.  Molecular Gas Dynamics , 1976 .

[47]  F. Schlögl Chemical reaction models for non-equilibrium phase transitions , 1972 .

[48]  J. Bodet,et al.  Etude expérimentale statistique des structures cibles de la réaction de Belousov-Zhabotinsky en régime oscillant , 1986 .

[49]  M. Muir Physical Chemistry , 1888, Nature.

[50]  H. Swinney,et al.  Transition from a uniform state to hexagonal and striped Turing patterns , 1991, Nature.

[51]  M. Eiswirth,et al.  Turbulence due to spiral breakup in a continuous excitable medium. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[52]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[53]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[54]  Anna T. Lawniczak,et al.  Lattice gas automata for reactive systems , 1995, comp-gas/9512001.

[55]  Mario Markus,et al.  Two types of performance of an isotropic cellular automaton: stationary (Turing) patterns and spiral waves , 1992 .

[56]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[57]  Andrew Wuensche,et al.  The global dynamics of cellular automata : an atlas of basin of attraction fields of one-dimensional cellular automata , 1992 .

[58]  B. Hess,et al.  Isotropic cellular automaton for modelling excitable media , 1990, Nature.

[59]  Christopher G. Langton,et al.  Computation at the edge of chaos: Phase transitions and emergent computation , 1990 .

[60]  C. Langton Self-reproduction in cellular automata , 1984 .

[61]  W. Rheinboldt,et al.  A COMPUTER MODEL OF ATRIAL FIBRILLATION. , 1964, American heart journal.

[62]  T. Tatsumi Theory of Homogeneous Turbulence , 1980 .

[63]  Arthur W. Burks,et al.  Essays on cellular automata , 1970 .

[64]  K. Showalter,et al.  The influence of the form of autocatalysis on the speed of chemical waves , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[65]  J. Tyson,et al.  A cellular automaton model of excitable media. II: curvature, dispersion, rotating waves and meandering waves , 1990 .

[66]  Anna T. Lawniczak,et al.  Reactive lattice gas automata , 1991 .

[67]  Diffusion of passive scalars under stochastic convection , 1994 .

[68]  Ole Jensen,et al.  Subcritical transitions to Turing structures , 1993 .

[69]  B. Alder,et al.  Analysis of the lattice Boltzmann treatment of hydrodynamics , 1993 .

[70]  G. Nicolis,et al.  NONLINEAR CHEMICAL DYNAMICS IN LOW-DIMENSIONAL LATTICES AND FRACTAL SETS , 1995 .

[71]  J. Boon,et al.  Cellular Automata Approach to Reaction-Diffusion Systems , 1989 .

[72]  Amos De Shalit,et al.  The feynman lectures on physics: vol. III, by Richard P. Feynman, Robert B. Leighton and Matthew Sands. v.p. diagrams, 8built14 × 11 X 11 in. Reading, Mass. Addison-Wesley Publ. Co., 1965. Price, $6.75 , 1967 .

[73]  Werner Ebeling,et al.  Effect of Fluctuation on Plane Front Propagation in Bistable Nonequilibrium Systems , 1983 .

[74]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[75]  Editors , 1986, Brain Research Bulletin.

[76]  Lutz Schimansky-Geier,et al.  Noise and diffusion in bistable nonequilibrium systems , 1985 .

[77]  Nucleation, domain growth, and fluctuations in a bistable chemical system , 1993 .

[78]  C. Nicolis Derivation of zero-dimensional from one-dimensional climate models , 1980 .

[79]  Tommaso Toffoli,et al.  Cellular automata machines - a new environment for modeling , 1987, MIT Press series in scientific computation.

[80]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[81]  Dynamics of fluctuations in a reactive system of low spatial dimension , 1996 .

[82]  S. Wolfram Cellular automaton fluids 1: Basic theory , 1986 .

[83]  A. Provata,et al.  Nonlinear chemical dynamics in low dimensions: An exactly soluble model , 1993 .

[84]  J. A. M. Janssen,et al.  The elimination of fast variables in complex chemical reactions. III. Mesoscopic level (irreducible case) , 1989 .

[85]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[86]  S. Hastings,et al.  Spatial Patterns for Discrete Models of Diffusion in Excitable Media , 1978 .

[87]  James P. Crutchfield,et al.  Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations , 1993, Complex Syst..

[88]  F. Baras,et al.  Microscopic simulation of chemical systems , 1992 .

[89]  Mai,et al.  Cellular-automaton approach to a surface reaction. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[90]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[91]  J. E. Pearson Complex Patterns in a Simple System , 1993, Science.

[92]  Chen,et al.  Lattice Boltzmann model for compressible fluids , 1992 .

[93]  E. F. Codd,et al.  Cellular automata , 1968 .

[94]  R. Berry,et al.  Fluctuations in the interface between two phases , 1983 .

[95]  Ehud Meron,et al.  Complex patterns in reaction-diffusion systems: A tale of two front instabilities. , 1994, Chaos.

[96]  Gary D. Doolen Lattice Gas Methods For Partial Differential Equations , 1990 .

[97]  S. P. Hastings,et al.  Pattern formation and periodic structures in systems modeled by reaction-diffusion equations , 1978 .

[98]  Switzerland.,et al.  Cellular automation model of reaction-transport processes , 1993, comp-gas/9312002.

[99]  John J. Tyson,et al.  The Belousov–Zhabotinskii reaction’ , 1976, Nature.

[100]  C. Vidal,et al.  Observed properties of trigger waves close to the center of the target patterns in an oscillating Belousov-Zhabotinskii reagent , 1989 .

[101]  Shiyi Chen,et al.  Lattice Boltzmann computations for reaction‐diffusion equations , 1993 .

[102]  Shiyi Chen,et al.  Lattice Boltzmann computational fluid dynamics in three dimensions , 1992 .

[103]  Dab,et al.  Lattice-gas automata for coupled reaction-diffusion equations. , 1991, Physical review letters.

[104]  L. Watson,et al.  Diffusion and wave propagation in cellular automaton models of excitable media , 1992 .